{"title":"Dynamic instability and nonlinear response analysis of nanocomposite sandwich arches with viscoelastic cores","authors":"Minge Yang , Junyi He , Qiqing Yue , Hua Tang","doi":"10.1016/j.cnsns.2024.108426","DOIUrl":"10.1016/j.cnsns.2024.108426","url":null,"abstract":"<div><div>This paper presents a comprehensive study of the nonlinear dynamic behavior and snap-through phenomena in sandwich arch structures with viscoelastic cores and carbon nanotube-reinforced nanocomposite face sheets. Subjected to uniform time-dependent pressure shocks, these arches exhibit complex snap-through behavior critical for practical engineering applications. Utilizing third-order shear deformation theory, the study accurately captures nonlinear behaviors. The viscoelastic core, modeled with the Kelvin-Voigt law, enhances damping and reduces vibration amplitudes. Numerical solutions are obtained using a Chebyshev-based Ritz method, Newmark integration, and Newton-Raphson method. The Budiansky-Ruth criterion evaluates dynamic buckling loads. Key findings include significant instability near buckling loads, increased buckling loads and vibration damping due to viscoelastic effects, reduced buckling loads with foam cores, improved performance with CNTs, and more pronounced CNT effects with greater deflections. Additional conclusions highlight the sensitivity of dynamic snap-through to geometric parameters and the superior accuracy of the proposed approach compared to traditional models. This research advances the understanding and design strategies for nonlinear sandwich arch structures, enhancing predictive capabilities in complex structural systems.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108426"},"PeriodicalIF":3.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of immune response in a latent tuberculosis infection model","authors":"Hui Cao , Jianquan Li , Pei Yu","doi":"10.1016/j.cnsns.2024.108404","DOIUrl":"10.1016/j.cnsns.2024.108404","url":null,"abstract":"<div><div>A simple mathematical model describing the immune response during the stage latent tuberculosis infection is established and analyzed. The main purpose of this study is to explore the sustained immune response of the immune system against invaded Mycobacterium tuberculosis in the stage of latent tuberculosis infection. First, the threshold <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is defined to determine the occurrence of sustained immune response. Then, stability conditions are derived to show that the sustained immune response may converge to a constant or to a stable periodical oscillation, implying that the Mycobacterium tuberculosis, the infected macrophages, the activated uninfected macrophages, and the immune cells coexist to form the tuberculous granuloma structure. This structure may appear calcified if the system solution converges to a constant, or maintains a dynamic balance if the system solution undergoes a periodical oscillation. These findings well demonstrate the process of sustained immune response in the latent tuberculosis infection as the Mycobacterium tuberculosis is changing. Numerical examples are presented to illustrate the theoretical predictions.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108404"},"PeriodicalIF":3.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inverse uncertainty quantification for stochastic systems by resampling. Applications to modeling of alcohol consumption and infection by HIV","authors":"Julia Calatayud , Marc Jornet , Carla M.A. Pinto","doi":"10.1016/j.cnsns.2024.108401","DOIUrl":"10.1016/j.cnsns.2024.108401","url":null,"abstract":"<div><div>A random differential equation, or stochastic differential equation with parametric uncertainty, is a classical differential equation whose input values (coefficients, initial conditions, etc.) are random variables. Given data, the probability distributions of the input random parameters must be appropriately inferred, before proceeding to simulate the model’s output. This task is called inverse uncertainty quantification. In this paper, the goal is to study the applicability of the Bayesian bootstrap to draw inferences on the posterior distributions of the parameters, by resampling the residuals of the deterministic least-squares optimization with Dirichlet weights. The method is based on repeated deterministic calibrations. Thus, to alleviate the curse of dimensionality, the technique may be combined with the principle of maximum entropy for densities, when there are some parameters that are not optimized deterministically. For illustration of the methodology, two case studies on important health topics are conducted, with stochastic fitting to data. The first one, on past alcohol consumption in Spain, taking social contagion into account. The second one, on HIV evolution considering CD4<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> T cells and viral load, with a patient in clinical follow-up. All these applied models are built from a compartmental viewpoint, with a randomized basic reproduction number that controls the long-term behavior of the system.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108401"},"PeriodicalIF":3.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A multiple-strain pathogen model with diffusion on the space of Radon measures","authors":"Azmy S. Ackleh , Nicolas Saintier , Aijun Zhang","doi":"10.1016/j.cnsns.2024.108402","DOIUrl":"10.1016/j.cnsns.2024.108402","url":null,"abstract":"<div><div>We formulate a multiple strain Susceptible–Infectious–Susceptible (SIS) pathogen model with diffusion on the space of Radon measures which has the advantage of unifying discrete and continuous strain spaces under one framework. We first establish the well-posedness of this model. Then we study the long-time behavior for the case of discrete strain spaces. We define the basic reproduction number for each strain. We establish the existence of a disease-free equilibrium and a strain-specific endemic equilibrium which defines a competitive exclusion equilibrium where the density of individuals at one strain is positive and the density at the remaining strains is zero. We study the stability of these equilibria under the assumption that the disease transmission and recovery rates are spatially homogeneous or under the assumption that the diffusion rate of the susceptible individuals is equal to the diffusion rate of the infected individuals. We then extend some of these long-time behavior results from the discrete strain space case to the continuous strain space case.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108402"},"PeriodicalIF":3.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel conformal structure-preserving schemes for the linearly damped nonlinear Schrödinger equation","authors":"Renjie Han , Yezi Xu , Hao Fu , Dong Yan","doi":"10.1016/j.cnsns.2024.108400","DOIUrl":"10.1016/j.cnsns.2024.108400","url":null,"abstract":"<div><div>In this work, by utilizing the Strang splitting technique, some advanced conformal structure-preserving schemes are developed for solving the damped nonlinear Schrödinger equation (DNLSE). The proposed innovative numerical approaches, namely the high-order compact conformal multi-symplectic method and the conformal momentum-preserving method, have two key computational advantages. Firstly, these two approaches excel in conserving local structures, and more importantly, they are capable of maintaining exact energy dissipation rates in any time-space region, particularly under periodic boundary conditions. To validate the theoretical properties and demonstrate the efficacy and stability of these approaches in long-time integrations, we conduct through extensive numerical simulations involving both bright and dark solitons.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108400"},"PeriodicalIF":3.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symbolic dynamics approach to find periodic windows: The case study of the Rössler system","authors":"Zbigniew Galias","doi":"10.1016/j.cnsns.2024.108403","DOIUrl":"10.1016/j.cnsns.2024.108403","url":null,"abstract":"<div><div>Modification of a parameter of a chaotic system may lead to the emergence of a periodic attractor. Under certain assumptions periodic windows (regions in the parameter space in which a periodic attractor exists) densely fill a chaotic region. Usually it is very difficult to prove this property. In this work, we propose a systematic procedure to locate and prove the existence of periodic windows. The method combines the symbolic dynamics based approach to find unstable periodic orbits (UPOs), the continuation method to locate periodic windows (PWs), and interval arithmetic tools to prove their existence. The proposed method is applied to the Rössler system. The existence of several thousands of PWs close to the classical parameter values is proved and periodic attractors very close in the parameter space to the classical Rössler attractor are found. Estimates of measures of sets of parameters for which a periodic attractor exists are calculated.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108403"},"PeriodicalIF":3.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S.S. Mohanrasu , T.M.C. Priyanka , A. Gowrisankar , Ardak Kashkynbayev , K. Udhayakumar , R. Rakkiyappan
{"title":"Fractional derivative of Hermite fractal splines on the fractional-order delayed neural networks synchronization","authors":"S.S. Mohanrasu , T.M.C. Priyanka , A. Gowrisankar , Ardak Kashkynbayev , K. Udhayakumar , R. Rakkiyappan","doi":"10.1016/j.cnsns.2024.108399","DOIUrl":"10.1016/j.cnsns.2024.108399","url":null,"abstract":"<div><div>The purpose of this research is twofold. First, the master–slave synchronization of fractional-order neural networks is explored with time delays using aperiodic intermittent control. Then we present a sufficient condition for master–slave synchronization of delayed fractional-order neural networks via average-width intermittent control technique. A numerical simulation is used to demonstrate the efficacy of the derived results. Second, a novel investigation of the Caputo-fractional derivative of Hermite fractal splines is accomplished. Moreover, its box counting dimension is estimated and related with the Caputo-fractional order. Additionally, we propose an image encryption algorithm utilizing the semi-tensor product (STP). The efficiency of the algorithm is evaluated through the application of statistical measures.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108399"},"PeriodicalIF":3.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Morteza Akbari , Abbas-Ali Zamani , Mohammad Seifi , Bartolomeo Pantò , Tomasz Falborski , Robert Jankowski
{"title":"An optimal nonlinear fractional order controller for passive/active base isolation building equipped with friction-tuned mass dampers","authors":"Morteza Akbari , Abbas-Ali Zamani , Mohammad Seifi , Bartolomeo Pantò , Tomasz Falborski , Robert Jankowski","doi":"10.1016/j.cnsns.2024.108405","DOIUrl":"10.1016/j.cnsns.2024.108405","url":null,"abstract":"<div><div>This paper presents an optimal nonlinear fractional-order controller (ONFOC) designed to reduce the seismic responses of tall buildings equipped with a base-isolation (BI) system and friction-tuned mass dampers (FTMDs). The parameters for the BI and FTMD systems, as well as their combinations (BI-FTMD and active BI-FTMD or ABI-FTMD), were optimized separately using a multi-objective quantum-inspired seagull optimization algorithm (MOQSOA). The seismic performances of the BI, FTMD, BI-FTMD, and ABI-FTMD systems for a 15-storey building subjected to two far-field (Loma Prieta and Landers) and two near-fields (Tabas and Northridge) earthquakes were evaluated. The results indicated that structures with BI, FTMD, BI-FTMD, and ABI-FTMD systems outperformed the uncontrolled structure in reducing structural responses during the design earthquakes (Loma Prieta and Tabas). However, under validation earthquakes (Landers and Northridge), the peak acceleration of the building with the FTMD system was worse than that of the uncontrolled structure during the near-field Northridge earthquake. To address this issue, we proposed a combination of the active BI system and the FTMD system. Time history analysis results demonstrated that for the building equipped with the ABI-FTMD system, the peak displacement, peak acceleration, and peak inter-storey drift were reduced by approximately 60%, 64%, and 78%, respectively, as compared to the uncontrolled structure.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108405"},"PeriodicalIF":3.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Environmental management and restoration under unified risk and uncertainty using robustified dynamic Orlicz risk","authors":"Hidekazu Yoshioka , Motoh Tsujimura , Futoshi Aranishi , Tomomi Tanaka","doi":"10.1016/j.cnsns.2024.108398","DOIUrl":"10.1016/j.cnsns.2024.108398","url":null,"abstract":"<div><div>Environmental management and restoration should be designed such that the risk and uncertainty owing to nonlinear stochastic systems can be successfully addressed. We apply the robustified dynamic Orlicz risk to the modeling and analysis of environmental management and restoration to consider both the risk and uncertainty within a unified theory. We focus on the control of a jump-driven hybrid stochastic system that represents macrophyte dynamics. The dynamic programming equation based on the Orlicz risk is first obtained heuristically, from which the associated Hamilton–Jacobi–Bellman (HJB) equation is derived. In the proposed Orlicz risk, the risk aversion of the decision-maker is represented by a power coefficient that resembles a certainty equivalence, whereas the uncertainty aversion is represented by the Kullback–Leibler divergence, in which the risk and uncertainty are handled consistently and separately. The HJB equation includes a new state-dependent discount factor that arises from the uncertainty aversion, which leads to a unique, nonlinear, and nonlocal term. The link between the proposed and classical stochastic control problems is discussed with a focus on control-dependent discount rates. We propose a finite difference method for computing the HJB equation. Finally, the proposed model is applied to an optimal harvesting problem for macrophytes in a brackish lake that contains both growing and drifting populations.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108398"},"PeriodicalIF":3.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ranjit Kumar Upadhyay , Debasish Pradhan , Rana D. Parshad , Parimita Roy
{"title":"Existence of global attractor in reaction–diffusion model of obesity-induced Alzheimer’s disease and its control strategies","authors":"Ranjit Kumar Upadhyay , Debasish Pradhan , Rana D. Parshad , Parimita Roy","doi":"10.1016/j.cnsns.2024.108396","DOIUrl":"10.1016/j.cnsns.2024.108396","url":null,"abstract":"<div><div>Evidence suggests that obesity, diabetes, and aging notably increase susceptibility to dementia-related conditions such as Alzheimer’s disease (AD). This article explores the correlations between obesity, diabetes, and AD. It introduces a diffusion-driven model encompassing variables like glucose dynamics, insulin levels, beta cells, microglia, cytokines, amyloid-<span><math><mi>β</mi></math></span> plaques, neurofibrillary tangles (<span><math><mi>τ</mi></math></span> plaques), neurodegeneration, and cognitive decline. The study includes stability analysis (local and global), examining boundedness and long-time behavior via showing the existence of a global attractor for the diffusion-driven model. A global sensitivity analysis, utilizing the Partial Rank Correlation Coefficient (PRCC), identifies factors sensitively impacting <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>β</mi></mrow></msub></math></span> plaque growth, <span><math><mi>τ</mi></math></span> plaques, and neurodegeneration. The deterministic model solution illustrates spatiotemporal dynamics, revealing a link between obesity and Alzheimer’s, which is characterized by distinct patchy patterns. While Alzheimer’s has no cure, employing optimal control techniques can help alleviate its effects and enhance affected individuals’ quality of life. An optimal control problem for AD management is developed, optimizing multiple aspects of disease management. The study highlights the efficacy of long-term healthy lifestyle practices and customized anti-amyloid therapy in significantly delaying obesity-induced AD progression. This research sheds light on the connection between obesity and Alzheimer’s, underscoring the negative impact of pro-inflammatory microglia on cognitive decline while proposing control strategies.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108396"},"PeriodicalIF":3.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}