Kelvin-Voigt方程的不连续Galerkin压力校正格式分析

IF 3.8 2区 数学 Q1 MATHEMATICS, APPLIED
Kushal Roy, Rajen Kumar Sinha
{"title":"Kelvin-Voigt方程的不连续Galerkin压力校正格式分析","authors":"Kushal Roy,&nbsp;Rajen Kumar Sinha","doi":"10.1016/j.cnsns.2025.109263","DOIUrl":null,"url":null,"abstract":"<div><div>We formulate and analyze a discontinuous Galerkin pressure correction scheme for solving the Kelvin-Voigt. The proposed scheme is proven to be unconditionally stable. Convergence of the discrete velocity is established through a priori error estimates in <span><math><msup><mi>L</mi><mn>2</mn></msup></math></span> and <span><math><mrow><mi>D</mi><mi>G</mi></mrow></math></span> norms, and validating our findings through numerical experiments. The theoretical analysis confirms optimal convergence rates in the <span><math><mrow><mi>D</mi><mi>G</mi></mrow></math></span> norm, and optimal spatial accuracy in the <span><math><msup><mi>L</mi><mn>2</mn></msup></math></span> norm, though temporal accuracy appears suboptimal. Nevertheless, numerical experiments indicate that the scheme achieves optimal accuracy in both time and space.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"152 ","pages":"Article 109263"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a discontinuous Galerkin pressure correction scheme for the Kelvin-Voigt equation\",\"authors\":\"Kushal Roy,&nbsp;Rajen Kumar Sinha\",\"doi\":\"10.1016/j.cnsns.2025.109263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We formulate and analyze a discontinuous Galerkin pressure correction scheme for solving the Kelvin-Voigt. The proposed scheme is proven to be unconditionally stable. Convergence of the discrete velocity is established through a priori error estimates in <span><math><msup><mi>L</mi><mn>2</mn></msup></math></span> and <span><math><mrow><mi>D</mi><mi>G</mi></mrow></math></span> norms, and validating our findings through numerical experiments. The theoretical analysis confirms optimal convergence rates in the <span><math><mrow><mi>D</mi><mi>G</mi></mrow></math></span> norm, and optimal spatial accuracy in the <span><math><msup><mi>L</mi><mn>2</mn></msup></math></span> norm, though temporal accuracy appears suboptimal. Nevertheless, numerical experiments indicate that the scheme achieves optimal accuracy in both time and space.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"152 \",\"pages\":\"Article 109263\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425006732\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425006732","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出并分析了一种求解Kelvin-Voigt的不连续伽辽金压力校正方案。证明了该方案是无条件稳定的。通过L2范数和DG范数的先验误差估计建立了离散速度的收敛性,并通过数值实验验证了我们的发现。理论分析证实了DG范数的最优收敛率和L2范数的最优空间精度,尽管时间精度似乎不是最优的。然而,数值实验表明,该方案在时间和空间上都具有最佳精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a discontinuous Galerkin pressure correction scheme for the Kelvin-Voigt equation
We formulate and analyze a discontinuous Galerkin pressure correction scheme for solving the Kelvin-Voigt. The proposed scheme is proven to be unconditionally stable. Convergence of the discrete velocity is established through a priori error estimates in L2 and DG norms, and validating our findings through numerical experiments. The theoretical analysis confirms optimal convergence rates in the DG norm, and optimal spatial accuracy in the L2 norm, though temporal accuracy appears suboptimal. Nevertheless, numerical experiments indicate that the scheme achieves optimal accuracy in both time and space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信