Computer-Aided Design最新文献

筛选
英文 中文
Mesh Denoising of Developable Surfaces with Curved Foldings 带曲线折叠的可展开曲面的网格去噪
IF 3 3区 计算机科学
Computer-Aided Design Pub Date : 2024-07-29 DOI: 10.1016/j.cad.2024.103776
{"title":"Mesh Denoising of Developable Surfaces with Curved Foldings","authors":"","doi":"10.1016/j.cad.2024.103776","DOIUrl":"10.1016/j.cad.2024.103776","url":null,"abstract":"<div><p>This paper presents a novel mesh denoising approach designed specifically for developable models with curved folds, going beyond traditional denoising metrics to focus on restoring the model’s developability. We introduce a metric based on normal variation to assess mesh developability and integrate it into an optimization problem that aims to increase the sparsity of the normal vector field, leading to a dedicated mesh denoising algorithm. The performance of our method is evaluated across a wide range of criteria, including standard metrics and surface developability determined through Gaussian curvature. Through testing on a variety of noisy models and comparison with several state-of-the-art mesh denoising and developability optimization techniques, our approach demonstrates superior performance in both traditional metrics and the enhancement of mesh developability.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design methodology of functionally graded cellular materials: Manipulating design parameters of triply periodic minimal surfaces through three-dimensional density distributions 功能分级蜂窝材料的设计方法:通过三维密度分布操纵三重周期极小曲面的设计参数
IF 3 3区 计算机科学
Computer-Aided Design Pub Date : 2024-07-24 DOI: 10.1016/j.cad.2024.103778
{"title":"Design methodology of functionally graded cellular materials: Manipulating design parameters of triply periodic minimal surfaces through three-dimensional density distributions","authors":"","doi":"10.1016/j.cad.2024.103778","DOIUrl":"10.1016/j.cad.2024.103778","url":null,"abstract":"<div><p>Functionally Graded Cellular Materials (FGCM) with variable volume fractions have demonstrated significant advantages, including weight reduction, improved stiffness, and enhanced load distribution, when compared to uniform density counterparts. Their design is often characterized by the application of a density distribution to locally modify Representative Volume Elements (RVEs). Current studies have explored the application of Triply Periodic Minimal Surfaces (TPMS) topologies, given their capability to create seamless and interconnected structures, thus avoiding stress concentration issues commonly encountered in traditional lattice configurations. Consequently, this paper introduces a design methodology tailored to TPMS-based FGCM allowing for independent or simultaneous adjustments of RVE thickness and size. Models for predicting relative density as a function of the RVE design parameters of Primitive and Gyroid topologies are presented and discussed. These models are employed to adapt the topologies to three-dimensional density distributions. The proposed method is implemented as a set of design tools and is illustrated for the studied TPMS topologies.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalizing feature preservation in iso-surface extraction from triple dexel models 在从三重 dexel 模型中提取等值面时实现特征保存的通用化
IF 3 3区 计算机科学
Computer-Aided Design Pub Date : 2024-07-24 DOI: 10.1016/j.cad.2024.103777
{"title":"Generalizing feature preservation in iso-surface extraction from triple dexel models","authors":"","doi":"10.1016/j.cad.2024.103777","DOIUrl":"10.1016/j.cad.2024.103777","url":null,"abstract":"<div><p>We present a method to resolve visual artifacts of a state-of-the-art iso-surface extraction algorithm by generating feature-preserving surface patches for isolated arbitrarily complex, single voxels without the need for further adaptive subdivision. In the literature, iso-surface extraction from a 3D voxel grid is limited to a single sharp feature per minimal unit, even for algorithms such as Cubical Marching Squares that produce feature-preserving surface reconstructions. In practice though, multiple sharp features can meet in a single voxel. This is reflected in the triple dexel model, which is used in simulation of CNC manufacturing processes. Our approach generalizes the use of normal information to perfectly preserve multiple sharp features for a single voxel, thus avoiding visual artifacts caused by state-of-the-art procedures.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141843726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density-Based Isogeometric Topology Optimization of Shell Structures 基于密度的壳体结构等几何拓扑优化
IF 3 3区 计算机科学
Computer-Aided Design Pub Date : 2024-07-22 DOI: 10.1016/j.cad.2024.103773
{"title":"Density-Based Isogeometric Topology Optimization of Shell Structures","authors":"","doi":"10.1016/j.cad.2024.103773","DOIUrl":"10.1016/j.cad.2024.103773","url":null,"abstract":"<div><p>Shell structures with high stiffness-to-weight ratios are desirable in various engineering applications. Topology optimization serves as a popular and effective tool for generating optimal shell structures. The solid isotropic material with penalization (SIMP) method is often chosen because of its simplicity and convenience. However, SIMP method is typically integrated with conventional Finite Element Analysis (FEA) which has limitations in computational accuracy. Achieving high accuracy with FEA necessitates a substantial number of elements, leading to computational burdens. In addition, the discrete representation of the material distribution function may result in rough boundaries. Owing to these limitations, this paper proposes an Isogeometric Analysis (IGA) based SIMP method for optimizing the topology of shell structures based on Reissner–Mindlin theory. This method uses Non-Uniform Rational B-Splines (NURBS) to represent both the shell structure and the material distribution function with the same basis functions, allowing for higher accuracy and smoother boundaries. The optimization model takes compliance as the objective function with a volume fraction constraint and the coefficients of the density function as design variables, resulting in an optimized shell structure defined by the material distribution function. To obtain fairing boundaries of the holes in the optimized shell structure, further process is conducted by fitting the boundaries with fair B-spline curves automatically. Furthermore, the proposed IGA-SIMP framework is applied to generate porous shell structures by imposing different local volume fraction constraints. Numerical examples are provided to demonstrate the feasibility and efficiency of the IGA-SIMP method, showing that it outperforms the FEA-SIMP method and produces smoother boundaries.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141960451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-based 3D scan coverage prediction for smart-control applications 基于机器学习的智能控制应用 3D 扫描覆盖范围预测
IF 3 3区 计算机科学
Computer-Aided Design Pub Date : 2024-07-20 DOI: 10.1016/j.cad.2024.103775
{"title":"Machine learning-based 3D scan coverage prediction for smart-control applications","authors":"","doi":"10.1016/j.cad.2024.103775","DOIUrl":"10.1016/j.cad.2024.103775","url":null,"abstract":"<div><p>Automatic control of a workpiece being manufactured is a requirement to ensure in-line correction and thus move towards a more intelligent manufacturing system. There is therefore a need to develop control strategies which are capable of taking precise account of real working conditions and enabling first-time-right control. As part of such a smart-control strategy, this paper introduces a machine learning-based approach capable of accurately predicting a priori the 3D coverage of a part according to a scan configuration given as input, i.e. predicting before scanning it which areas of the part will be acquired for real. This corresponds to a paradigm shift, where coverage estimation no longer relies on theoretical visibility criteria, but on rules learned from a large amount of data acquired in real-life conditions. The proposed 3D Scan Coverage Prediction Network (3DSCP-Net) is based on a 3D feature encoding and decoding module, which is capable of taking into account the specifics of the scan configuration whose impact on the 3D coverage is to be predicted. To take account of real working conditions, features are extracted at various levels, including geometric ones, but also features characterising the way structured-light projection behaves. The method is thus able to incorporate inter-reflection and overexposure issues into the prediction process. The database used for the training was built using an ad-hoc platform specially designed to enable the automatic acquisition and labelling of numerous point clouds from a wide variety of scan configurations. Experiments on several parts show that the method can efficiently predict the scan coverage, and that it outperforms conventional approaches based on purely theoretical visibility criteria.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Proceedings of SPM 2024 Symposium 特约编辑:SPM 2024 研讨会论文集
IF 3 3区 计算机科学
Computer-Aided Design Pub Date : 2024-07-18 DOI: 10.1016/j.cad.2024.103774
{"title":"Guest Editorial: Proceedings of SPM 2024 Symposium","authors":"","doi":"10.1016/j.cad.2024.103774","DOIUrl":"10.1016/j.cad.2024.103774","url":null,"abstract":"","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiresolution lattice-based support generation for additive manufacturing 基于多分辨率网格的增材制造支撑生成技术
IF 3 3区 计算机科学
Computer-Aided Design Pub Date : 2024-07-17 DOI: 10.1016/j.cad.2024.103771
{"title":"Multiresolution lattice-based support generation for additive manufacturing","authors":"","doi":"10.1016/j.cad.2024.103771","DOIUrl":"10.1016/j.cad.2024.103771","url":null,"abstract":"<div><p>The generation of support for 3D models toward 3D printing is a highly challenging task that is of great need in many additive manufacturing processes. In this work, we explore the use of multiresolution geometric lattices to generate support with controlled contact locations. That is, with bounds on the maximal distance between adjacent local support points. A variety of end-user controls over the synthesized support are provided, such as the angular slopes in the model that are provided with support and/or controls on the dimensions and sizes of the support lattice tiles. These controls are augmented with the option of an automated optimization via a direct link to analysis. We demonstrate this proposed lattice approach for support synthesis on several 3D models of different types.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing irregular hypar-based quad-mesh patterns for segmented timber shells 为分段木壳计算基于 hypar 的不规则四网格模式
IF 3 3区 计算机科学
Computer-Aided Design Pub Date : 2024-07-15 DOI: 10.1016/j.cad.2024.103772
{"title":"Computing irregular hypar-based quad-mesh patterns for segmented timber shells","authors":"","doi":"10.1016/j.cad.2024.103772","DOIUrl":"10.1016/j.cad.2024.103772","url":null,"abstract":"<div><p>Hyperbolic paraboloids, “hypars,” are special types of ruled surfaces. Their geometric properties provide them with loadbearing and stabilizing capacities, as well as distinct esthetic qualities. These attributes become evident in numerous applications in buildings, in many of which concrete or timber is used for the construction of the hypars. Hypars could also be relevant in the context of circular construction and design for disassembly, and the upcycling of construction waste. Due to the geometric simplicity of straight lines, which generate ruled surfaces, hypar-based structures can be designed and built with relatively simple means. They can consist of self-similar or even identical elements, which could facilitate their reuse.</p><p>Compared to other types of ruled surfaces, such as conoids, hypars have the advantage of being doubly ruled, meaning that structural grids of straight elements can be formed. This paper investigates another interesting property, which is the possibility of creating flat-quad meshes by diagonally connecting the intersection points of the generatrices. This property has been previously described by other scholars, some of which explored its applicability for glass-clad steel grid shells. In this research, we focus on its potential for segmented timber shells that can serve as stand-alone structures, or as modular and reusable building parts, such as façade or roof components. The reusability of such modular units could be achieved by using reversible joints between them.</p><p>More specifically, our research investigates the design space of construction systems based on such components via computational design and optimization algorithms, such as the memory limited Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm with automatic computation of the gradient, within the Julia programming environment. By applying principles and methods of differential geometry, we study hypars with irregular tilings, enabling the integration of panels with diverse proportions, shapes and sizes, as they can occur in wood production waste. By reducing construction waste, the work aims at reducing the negative environmental impact of the building construction sector. Moreover, irregular tilings could enable a more customized design of acoustic qualities and offer visual variety in segmented hypar based timber structures.</p><p>The here presented studies show that the proposed optimization method provides a good fit of many tiles to rhombi, particularly when the steepness is not too large. We also show that optimizing towards rectangles provides better results. Overall, the results support the initial assumption that irregular rulings could be a means of adapting to both homogeneous and diverse material stocks.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141695977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Scale and Irregularly Distributed Circular Hole Feature Extraction from Engine Cylinder Point Clouds 从发动机气缸点云中提取多尺度和不规则分布的圆孔特征
IF 3 3区 计算机科学
Computer-Aided Design Pub Date : 2024-07-06 DOI: 10.1016/j.cad.2024.103761
Kaijun Zhang , Zikuan Li , Anyi Huang, Chenghan Pu, Jun Wang
{"title":"Multi-Scale and Irregularly Distributed Circular Hole Feature Extraction from Engine Cylinder Point Clouds","authors":"Kaijun Zhang ,&nbsp;Zikuan Li ,&nbsp;Anyi Huang,&nbsp;Chenghan Pu,&nbsp;Jun Wang","doi":"10.1016/j.cad.2024.103761","DOIUrl":"https://doi.org/10.1016/j.cad.2024.103761","url":null,"abstract":"<div><p>The circular hole structures on automotive engines possess stringent mechanical processing requirements, so it is of vital importance to perform quality inspections on all manufactured circular hole structures. The detection of circular holes on automotive engines presents a significant challenge due to their numerous, multi-scale, and irregular distribution. Additionally, the data pertaining to circular holes is often incomplete, further complicating the detection process. In this paper, we proposed a multi-scale and irregularly distributed circular hole detection method for engine cylinder blocks, which enables the efficient extraction of all hole feature points within the engine, thereby facilitating quality inspection. First, the utilization of compartmentalization analysis techniques enhances the perceptual capacity for internal hole features from various angles. Second, by employing curvature center contractility method, hole-wall points are contracted towards their circular center positions, further enhancing the identification accuracy of small holes and holes with missing data. The proposed method is tested on both synthetic data and raw data, and compared with existing extraction and circular hole fitting methods. The experiment results demonstrate that compared to other methods, our method achieves the best feature point detection accuracy and hole primitive parameter calculation accuracy. Notably, even in special situations such as those with insufficient hole points and rounded structures, our method maintains exceptional discriminative capability and stability.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448524000885/pdfft?md5=0c10e701e8c0541364fd35f5ea645ab7&pid=1-s2.0-S0010448524000885-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141606256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D stochastic microstructure reconstruction via slice images and attention-mechanism-based GAN 通过切片图像和基于注意机制的 GAN 进行三维随机微观结构重建
IF 3 3区 计算机科学
Computer-Aided Design Pub Date : 2024-06-29 DOI: 10.1016/j.cad.2024.103760
Ting Zhang , Ningjie Bian , Xue Li
{"title":"3D stochastic microstructure reconstruction via slice images and attention-mechanism-based GAN","authors":"Ting Zhang ,&nbsp;Ningjie Bian ,&nbsp;Xue Li","doi":"10.1016/j.cad.2024.103760","DOIUrl":"https://doi.org/10.1016/j.cad.2024.103760","url":null,"abstract":"<div><p>Stochastic media are used to characterize materials with irregular structure and spatial randomness, and the remarkable macroscopic features of stochastic media are often determined by their internal microstructure. Hardware loads and computational burdens have always been a challenge for the reconstruction of large-volume materials. To tackle the aforementioned concerns, this paper proposes a learning model based on generative adversarial network that uses multiple 2D slice images to reconstruct 3D stochastic microstructures. The whole model training process requires only a 3D image of stochastic media as the training image. In addition, the attention mechanism captures cross-dimensional interactions to prioritize the learned features and improves the effectiveness of training. The model is tested on stochastic porous media with two-phase internal structure and complex morphology. The experimental findings demonstrate that utilizing multiple 2D images helps the model learn better and reduces the occurrence of overfitting, while greatly reducing the hardware loads of the model.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信