{"title":"使用定制形状的刀具对自由几何形状的5轴侧面数控加工进行光滑表面加工","authors":"Michal Bizzarri , Kanika Rajain , Michael Bartoň","doi":"10.1016/j.cad.2025.103887","DOIUrl":null,"url":null,"abstract":"<div><div>Geometric modeling is traditionally a key part of an efficient manufacturing pipeline as one can decide, in virtual realm, what specific manufacturing tools to use and how to move them. Flank milling is the finishing stage of 5-axis Computer Numerically Controlled (CNC) machining, a stage where the machining accuracy is equally important as the smooth surface finish of the to-be-manufactured workpiece. The benchmark machining geometries such as propellers or blisks are doubly-curved surfaces and one typically needs several paths of the tool to get highly accurate surface finish. However, navigating a tool to move tangentially (i.e., in flank fashion) to the surface is very restrictive and in order to get highly accurate approximation, one typically has to compromise the smoothness across the neighboring paths.</div><div>To connect neighboring paths in smooth (<span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-continuous) fashion using a conical tool is possible only for reasonably flat target geometries, such as spiral bevel gears, however, for a general free-form surface conical tools do not offer sufficient degrees of freedom. In this work, we consider generally curved, custom-shaped, cutting tools, whose shape is a design parameter computed by the proposed optimization-based framework to adapt their motions globally to the input free-form surface, supporting a feature of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> connection across the neighboring paths. We demonstrate our algorithm on synthetic free-form surfaces as well as on industrial benchmark datasets, showing that optimizing the shape of the tool offers more flexibility to produce <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> connections between neighboring strips and outperforms conical tools both in terms of the approximation error and the smoothness.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"185 ","pages":"Article 103887"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth surface finishing for 5-axis flank CNC machining of free-form geometries using custom-shaped tools\",\"authors\":\"Michal Bizzarri , Kanika Rajain , Michael Bartoň\",\"doi\":\"10.1016/j.cad.2025.103887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Geometric modeling is traditionally a key part of an efficient manufacturing pipeline as one can decide, in virtual realm, what specific manufacturing tools to use and how to move them. Flank milling is the finishing stage of 5-axis Computer Numerically Controlled (CNC) machining, a stage where the machining accuracy is equally important as the smooth surface finish of the to-be-manufactured workpiece. The benchmark machining geometries such as propellers or blisks are doubly-curved surfaces and one typically needs several paths of the tool to get highly accurate surface finish. However, navigating a tool to move tangentially (i.e., in flank fashion) to the surface is very restrictive and in order to get highly accurate approximation, one typically has to compromise the smoothness across the neighboring paths.</div><div>To connect neighboring paths in smooth (<span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-continuous) fashion using a conical tool is possible only for reasonably flat target geometries, such as spiral bevel gears, however, for a general free-form surface conical tools do not offer sufficient degrees of freedom. In this work, we consider generally curved, custom-shaped, cutting tools, whose shape is a design parameter computed by the proposed optimization-based framework to adapt their motions globally to the input free-form surface, supporting a feature of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> connection across the neighboring paths. We demonstrate our algorithm on synthetic free-form surfaces as well as on industrial benchmark datasets, showing that optimizing the shape of the tool offers more flexibility to produce <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> connections between neighboring strips and outperforms conical tools both in terms of the approximation error and the smoothness.</div></div>\",\"PeriodicalId\":50632,\"journal\":{\"name\":\"Computer-Aided Design\",\"volume\":\"185 \",\"pages\":\"Article 103887\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448525000491\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448525000491","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Smooth surface finishing for 5-axis flank CNC machining of free-form geometries using custom-shaped tools
Geometric modeling is traditionally a key part of an efficient manufacturing pipeline as one can decide, in virtual realm, what specific manufacturing tools to use and how to move them. Flank milling is the finishing stage of 5-axis Computer Numerically Controlled (CNC) machining, a stage where the machining accuracy is equally important as the smooth surface finish of the to-be-manufactured workpiece. The benchmark machining geometries such as propellers or blisks are doubly-curved surfaces and one typically needs several paths of the tool to get highly accurate surface finish. However, navigating a tool to move tangentially (i.e., in flank fashion) to the surface is very restrictive and in order to get highly accurate approximation, one typically has to compromise the smoothness across the neighboring paths.
To connect neighboring paths in smooth (-continuous) fashion using a conical tool is possible only for reasonably flat target geometries, such as spiral bevel gears, however, for a general free-form surface conical tools do not offer sufficient degrees of freedom. In this work, we consider generally curved, custom-shaped, cutting tools, whose shape is a design parameter computed by the proposed optimization-based framework to adapt their motions globally to the input free-form surface, supporting a feature of connection across the neighboring paths. We demonstrate our algorithm on synthetic free-form surfaces as well as on industrial benchmark datasets, showing that optimizing the shape of the tool offers more flexibility to produce connections between neighboring strips and outperforms conical tools both in terms of the approximation error and the smoothness.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.