Don Pubudu Vishwana Joseph Jayakody , Tak Yu Lau , Hyunyoung Kim , Kai Tang , Lauren E.J. Thomas-Seale
{"title":"A salient vector field-driven part orientation selection for multi-axis 3D printing","authors":"Don Pubudu Vishwana Joseph Jayakody , Tak Yu Lau , Hyunyoung Kim , Kai Tang , Lauren E.J. Thomas-Seale","doi":"10.1016/j.cad.2025.103877","DOIUrl":null,"url":null,"abstract":"<div><div>Part orientation is a crucial element that governs the impact of several manufacturing constraints in material extrusion-based additive manufacturing (AM). Although part orientation optimisation has been extensively investigated to improve the manufacturability in 2.5-axis AM configuration, its influence on material extrusion-based multi-axis AM remains underdetermined. In this paper, we propose a computational framework to find the optimal part orientation that maximises the compliance of the tool orientation vector field with respect to several constraints required for support-free multi-axis AM. By combining topological significance, mesh saliency and curvedness metrics, we introduce a new salient feature map to formulate the link between the part orientation and the tool orientation vector field compliance. Once the optimal orientation is computed, our method enables a direct computation of a compliant iso-tool orientation vector field for a set of input iso-tool path points. We demonstrate that the part orientation can indeed be changed to minimise tool angle variation whilst adhering to overhang angle constraints for a range of 3D mesh models. The effectiveness of the proposed method is validated by comparing our method with existing tool orientation vector field design methods. Our promising results reveal the potential in part orientation optimisation as a means to address manufacturing constraints in multi-axis tool path design.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"184 ","pages":"Article 103877"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448525000399","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Part orientation is a crucial element that governs the impact of several manufacturing constraints in material extrusion-based additive manufacturing (AM). Although part orientation optimisation has been extensively investigated to improve the manufacturability in 2.5-axis AM configuration, its influence on material extrusion-based multi-axis AM remains underdetermined. In this paper, we propose a computational framework to find the optimal part orientation that maximises the compliance of the tool orientation vector field with respect to several constraints required for support-free multi-axis AM. By combining topological significance, mesh saliency and curvedness metrics, we introduce a new salient feature map to formulate the link between the part orientation and the tool orientation vector field compliance. Once the optimal orientation is computed, our method enables a direct computation of a compliant iso-tool orientation vector field for a set of input iso-tool path points. We demonstrate that the part orientation can indeed be changed to minimise tool angle variation whilst adhering to overhang angle constraints for a range of 3D mesh models. The effectiveness of the proposed method is validated by comparing our method with existing tool orientation vector field design methods. Our promising results reveal the potential in part orientation optimisation as a means to address manufacturing constraints in multi-axis tool path design.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.