Chengfan Li , Liangbing Nie , Zhenkui Sun , Xuehai Ding , Quanyong Luo , Chentian Shen
{"title":"3DFRINet: A Framework for the Detection and Diagnosis of Fracture Related Infection in Low Extremities Based on 18F-FDG PET/CT 3D Images","authors":"Chengfan Li , Liangbing Nie , Zhenkui Sun , Xuehai Ding , Quanyong Luo , Chentian Shen","doi":"10.1016/j.compmedimag.2024.102394","DOIUrl":"https://doi.org/10.1016/j.compmedimag.2024.102394","url":null,"abstract":"<div><p>Fracture related infection (FRI) is one of the most devastating complications after fracture surgery in the lower extremities, which can lead to extremely high morbidity and medical costs. Therefore, early comprehensive evaluation and accurate diagnosis of patients are critical for appropriate treatment, prevention of complications, and good prognosis. <sup>18</sup>Fluoro-deoxyglucose positron emission tomography/computed tomography (<sup>18</sup>F-FDG PET/CT) is one of the most commonly used medical imaging modalities for diagnosing FRI. With the development of deep learning, more neural networks have been proposed and become powerful computer-aided diagnosis tools in medical imaging. Therefore, a fully automated two-stage framework for FRI detection and diagnosis, 3DFRINet (Three Dimension FRI Network), is proposed for <sup>18</sup>F-FDG PET/CT 3D imaging. The first stage can effectively extract and fuse the features of both modalities to accurately locate the lesion by the dual-branch design and attention module. The second stage reduces the dimensionality of the image by using the maximum intensity projection, which retains the effective features while reducing the computational effort and achieving excellent diagnostic performance. The diagnostic performance of lesions reached 91.55% accuracy, 0.9331 AUC, and 0.9250 F1 score. 3DFRINet has an advantage over six nuclear medicine experts in each classification metric. The statistical analysis shows that 3DFRINet is equivalent or superior to the primary nuclear medicine physicians and comparable to the senior nuclear medicine physicians. In conclusion, this study first proposed a method based on <sup>18</sup>F-FDG PET/CT three-dimensional imaging for FRI location and diagnosis. This method shows superior lesion detection rate and diagnostic efficiency and therefore has good prospects for clinical application.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102394"},"PeriodicalIF":5.7,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards a unified approach for unsupervised brain MRI Motion Artefact Detection with few shot Anomaly Detection","authors":"Niamh Belton , Misgina Tsighe Hagos , Aonghus Lawlor , Kathleen M. Curran","doi":"10.1016/j.compmedimag.2024.102391","DOIUrl":"https://doi.org/10.1016/j.compmedimag.2024.102391","url":null,"abstract":"<div><p>Automated Motion Artefact Detection (MAD) in Magnetic Resonance Imaging (MRI) is a field of study that aims to automatically flag motion artefacts in order to prevent the requirement for a repeat scan. In this paper, we identify and tackle the three current challenges in the field of automated MAD; (1) reliance on fully-supervised training, meaning they require specific examples of Motion Artefacts (MA), (2) inconsistent use of benchmark datasets across different works and use of private datasets for testing and training of newly proposed MAD techniques and (3) a lack of sufficiently large datasets for MRI MAD. To address these challenges, we demonstrate how MAs can be identified by formulating the problem as an unsupervised Anomaly Detection (AD) task. We compare the performance of three State-of-the-Art AD algorithms DeepSVDD, Interpolated Gaussian Descriptor and FewSOME on two open-source Brain MRI datasets on the task of MAD and MA severity classification, with FewSOME achieving a MAD AUC <span><math><mrow><mo>></mo><mn>90</mn><mtext>%</mtext></mrow></math></span> on both datasets and a Spearman Rank Correlation Coefficient of 0.8 on the task of MA severity classification. These models are trained in the few shot setting, meaning large Brain MRI datasets are not required to build robust MAD algorithms. This work also sets a standard protocol for testing MAD algorithms on open-source benchmark datasets. In addition to addressing these challenges, we demonstrate how our proposed ‘anomaly-aware’ scoring function improves FewSOME’s MAD performance in the setting where one and two shots of the anomalous class are available for training. Code available at <span>https://github.com/niamhbelton/Unsupervised-Brain-MRI-Motion-Artefact-Detection/</span><svg><path></path></svg>.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102391"},"PeriodicalIF":5.7,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0895611124000685/pdfft?md5=8275185e5cfc03cae6d8bed048a27239&pid=1-s2.0-S0895611124000685-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruisheng Su , P. Matthijs van der Sluijs , Yuan Chen , Sandra Cornelissen , Ruben van den Broek , Wim H. van Zwam , Aad van der Lugt , Wiro J. Niessen , Danny Ruijters , Theo van Walsum
{"title":"CAVE: Cerebral artery–vein segmentation in digital subtraction angiography","authors":"Ruisheng Su , P. Matthijs van der Sluijs , Yuan Chen , Sandra Cornelissen , Ruben van den Broek , Wim H. van Zwam , Aad van der Lugt , Wiro J. Niessen , Danny Ruijters , Theo van Walsum","doi":"10.1016/j.compmedimag.2024.102392","DOIUrl":"https://doi.org/10.1016/j.compmedimag.2024.102392","url":null,"abstract":"<div><p>Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (<span><math><mo>±</mo></math></span>0.04) and an artery–vein segmentation Dice of 0.79 (<span><math><mo>±</mo></math></span>0.06). CAVE surpasses traditional Frangi-based <span><math><mi>k</mi></math></span>-means clustering (P <span><math><mo><</mo></math></span> 0.001) and U-Net (P <span><math><mo><</mo></math></span> 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at <span>https://github.com/RuishengSu/CAVE_DSA</span><svg><path></path></svg>.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102392"},"PeriodicalIF":5.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0895611124000697/pdfft?md5=b8c9ddb6b9334a5a30392653d4a487b2&pid=1-s2.0-S0895611124000697-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140842800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhanqiang Guo , Jianjiang Feng , Wangsheng Lu , Yin Yin , Guangming Yang , Jie Zhou
{"title":"Cross-modality cerebrovascular segmentation based on pseudo-label generation via paired data","authors":"Zhanqiang Guo , Jianjiang Feng , Wangsheng Lu , Yin Yin , Guangming Yang , Jie Zhou","doi":"10.1016/j.compmedimag.2024.102393","DOIUrl":"https://doi.org/10.1016/j.compmedimag.2024.102393","url":null,"abstract":"<div><p>Accurate segmentation of cerebrovascular structures from Computed Tomography Angiography (CTA), Magnetic Resonance Angiography (MRA), and Digital Subtraction Angiography (DSA) is crucial for clinical diagnosis of cranial vascular diseases. Recent advancements in deep Convolution Neural Network (CNN) have significantly improved the segmentation process. However, training segmentation networks for all modalities requires extensive data labeling for each modality, which is often expensive and time-consuming. To circumvent this limitation, we introduce an approach to train cross-modality cerebrovascular segmentation network based on paired data from source and target domains. Our approach involves training a universal vessel segmentation network with manually labeled source domain data, which automatically produces initial labels for target domain training images. We improve the initial labels of target domain training images by fusing paired images, which are then used to refine the target domain segmentation network. A series of experimental arrangements is presented to assess the efficacy of our method in various practical application scenarios. The experiments conducted on an MRA-CTA dataset and a DSA-CTA dataset demonstrate that the proposed method is effective for cross-modality cerebrovascular segmentation and achieves state-of-the-art performance.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102393"},"PeriodicalIF":5.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140822866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Motion correction and super-resolution for multi-slice cardiac magnetic resonance imaging via an end-to-end deep learning approach","authors":"Zhennong Chen, Hui Ren, Quanzheng Li, Xiang Li","doi":"10.1016/j.compmedimag.2024.102389","DOIUrl":"https://doi.org/10.1016/j.compmedimag.2024.102389","url":null,"abstract":"<div><p>Accurate reconstruction of a high-resolution 3D volume of the heart is critical for comprehensive cardiac assessments. However, cardiac magnetic resonance (CMR) data is usually acquired as a stack of 2D short-axis (SAX) slices, which suffers from the inter-slice misalignment due to cardiac motion and data sparsity from large gaps between SAX slices. Therefore, we aim to propose an end-to-end deep learning (DL) model to address these two challenges simultaneously, employing specific model components for each challenge. The objective is to reconstruct a high-resolution 3D volume of the heart (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>HR</mi></mrow></msub></math></span>) from acquired CMR SAX slices (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>LR</mi></mrow></msub></math></span>). We define the transformation from <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>LR</mi></mrow></msub></math></span> to <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>HR</mi></mrow></msub></math></span> as a sequential process of motion correction and super-resolution. Accordingly, our DL model incorporates two distinct components. The first component conducts motion correction by predicting displacement vectors to re-position each SAX slice accurately. The second component takes the motion-corrected SAX slices from the first component and performs the super-resolution to fill the data gaps. These two components operate in a sequential way, and the entire model is trained end-to-end. Our model significantly reduced inter-slice misalignment from originally 3.33<span><math><mo>±</mo></math></span>0.74 mm to 1.36<span><math><mo>±</mo></math></span>0.63 mm and generated accurate high resolution 3D volumes with Dice of 0.974<span><math><mo>±</mo></math></span>0.010 for left ventricle (LV) and 0.938<span><math><mo>±</mo></math></span>0.017 for myocardium in a simulation dataset. When compared to the LAX contours in a real-world dataset, our model achieved Dice of 0.945<span><math><mo>±</mo></math></span>0.023 for LV and 0.786<span><math><mo>±</mo></math></span>0.060 for myocardium. In both datasets, our model with specific components for motion correction and super-resolution significantly enhance the performance compared to the model without such design considerations. The codes for our model are available at <span>https://github.com/zhennongchen/CMR_MC_SR_End2End</span><svg><path></path></svg>.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102389"},"PeriodicalIF":5.7,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140816871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Huang , Sven A. Holcombe , Stewart C. Wang , Jisi Tang
{"title":"A deep learning-based pipeline for developing multi-rib shape generative model with populational percentiles or anthropometrics as predictors","authors":"Yuan Huang , Sven A. Holcombe , Stewart C. Wang , Jisi Tang","doi":"10.1016/j.compmedimag.2024.102388","DOIUrl":"10.1016/j.compmedimag.2024.102388","url":null,"abstract":"<div><p>Rib cross-sectional shapes (characterized by the outer contour and cortical bone thickness) affect the rib mechanical response under impact loading, thereby influence the rib injury pattern and risk. A statistical description of the rib shapes or their correlations to anthropometrics is a prerequisite to the development of numerical human body models representing target demographics. Variational autoencoders (VAE) as anatomical shape generators remain to be explored in terms of utilizing the latent vectors to control or interpret the representativeness of the generated results. In this paper, we propose a pipeline for developing a multi-rib cross-sectional shape generative model from CT images, which consists of the achievement of rib cross-sectional shape data from CT images using an anatomical indexing system and regular grids, and a unified framework to fit shape distributions and associate shapes to anthropometrics for different rib categories. Specifically, we collected CT images including 3193 ribs, surface regular grid is generated for each rib based on anatomical coordinates, the rib cross-sectional shapes are characterized by nodal coordinates and cortical bone thickness. The tensor structure of shape data based on regular grids enable the implementation of CNNs in the conditional variational autoencoder (CVAE). The CVAE is trained against an auxiliary classifier to decouple the low-dimensional representations of the inter- and intra- variations and fit each intra-variation by a Gaussian distribution simultaneously. Random tree regressors are further leveraged to associate each continuous intra-class space with the corresponding anthropometrics of the subjects, i.e., age, height and weight. As a result, with the rib class labels and the latent vectors sampled from Gaussian distributions or predicted from anthropometrics as the inputs, the decoder can generate valid rib cross-sectional shapes of given class labels (male/female, 2nd to 11th ribs) for arbitrary populational percentiles or specific age, height and weight, which paves the road for future biomedical and biomechanical studies considering the diversity of rib shapes across the population.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102388"},"PeriodicalIF":5.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140791093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunsu Park , Jeong-Woon Kang , Doen-Eon Lee , Wookon Son , Sang-Min Lee , Chankue Park , MinWoo Kim
{"title":"W-DRAG: A joint framework of WGAN with data random augmentation optimized for generative networks for bone marrow edema detection in dual energy CT","authors":"Chunsu Park , Jeong-Woon Kang , Doen-Eon Lee , Wookon Son , Sang-Min Lee , Chankue Park , MinWoo Kim","doi":"10.1016/j.compmedimag.2024.102387","DOIUrl":"10.1016/j.compmedimag.2024.102387","url":null,"abstract":"<div><p>Dual-energy computed tomography (CT) is an excellent substitute for identifying bone marrow edema in magnetic resonance imaging. However, it is rarely used in practice owing to its low contrast. To overcome this problem, we constructed a framework based on deep learning techniques to screen for diseases using axial bone images and to identify the local positions of bone lesions. To address the limited availability of labeled samples, we developed a new generative adversarial network (GAN) that extends expressions beyond conventional augmentation (CA) methods based on geometric transformations. We theoretically and experimentally determined that combining the concepts of data augmentation optimized for GAN training (DAG) and Wasserstein GAN yields a considerably stable generation of synthetic images and effectively aligns their distribution with that of real images, thereby achieving a high degree of similarity. The classification model was trained using real and synthetic samples. Consequently, the GAN technique used in the diagnostic test had an improved F1 score of approximately 7.8% compared with CA. The final F1 score was 80.24%, and the recall and precision were 84.3% and 88.7%, respectively. The results obtained using the augmented samples outperformed those obtained using pure real samples without augmentation. In addition, we adopted explainable AI techniques that leverage a class activation map (CAM) and principal component analysis to facilitate visual analysis of the network’s results. The framework was designed to suggest an attention map and scattering plot to visually explain the disease predictions of the network.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102387"},"PeriodicalIF":5.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0895611124000648/pdfft?md5=340b576800836a42ff054a8829a2c44e&pid=1-s2.0-S0895611124000648-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140784586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Navid Akbar , Sebastian F. Ruf , Ashutosh Singh , Razieh Faghihpirayesh , Rachael Garner , Alexis Bennett , Celina Alba , Marianna La Rocca , Tales Imbiriba , Deniz Erdoğmuş , Dominique Duncan
{"title":"Advancing post-traumatic seizure classification and biomarker identification: Information decomposition based multimodal fusion and explainable machine learning with missing neuroimaging data","authors":"Md Navid Akbar , Sebastian F. Ruf , Ashutosh Singh , Razieh Faghihpirayesh , Rachael Garner , Alexis Bennett , Celina Alba , Marianna La Rocca , Tales Imbiriba , Deniz Erdoğmuş , Dominique Duncan","doi":"10.1016/j.compmedimag.2024.102386","DOIUrl":"10.1016/j.compmedimag.2024.102386","url":null,"abstract":"<div><p>A late post-traumatic seizure (LPTS), a consequence of traumatic brain injury (TBI), can potentially evolve into a lifelong condition known as post-traumatic epilepsy (PTE). Presently, the mechanism that triggers epileptogenesis in TBI patients remains elusive, inspiring the epilepsy community to devise ways to predict which TBI patients will develop PTE and to identify potential biomarkers. In response to this need, our study collected comprehensive, longitudinal multimodal data from 48 TBI patients across multiple participating institutions. A supervised binary classification task was created, contrasting data from LPTS patients with those without LPTS. To accommodate missing modalities in some subjects, we took a two-pronged approach. Firstly, we extended a graphical model-based Bayesian estimator to directly classify subjects with incomplete modality. Secondly, we explored conventional imputation techniques. The imputed multimodal information was then combined, following several fusion and dimensionality reduction techniques found in the literature, and subsequently fitted to a kernel- or a tree-based classifier. For this fusion, we proposed two new algorithms: recursive elimination of correlated components (RECC) that filters information based on the correlation between the already selected features, and information decomposition and selective fusion (IDSF), which effectively recombines information from decomposed multimodal features. Our cross-validation findings showed that the proposed IDSF algorithm delivers superior performance based on the area under the curve (AUC) score. Ultimately, after rigorous statistical comparisons and interpretable machine learning examination using Shapley values of the most frequently selected features, we recommend the two following magnetic resonance imaging (MRI) abnormalities as potential biomarkers: the left anterior limb of internal capsule in diffusion MRI (dMRI), and the right middle temporal gyrus in functional MRI (fMRI).</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102386"},"PeriodicalIF":5.7,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140775799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ye-Jun Gong , Yue-Ke Li , Rongrong Zhou , Zhan Liang , Yingying Zhang , Tingting Cheng , Zi-Jian Zhang
{"title":"A novel approach for estimating lung tumor motion based on dynamic features in 4D-CT","authors":"Ye-Jun Gong , Yue-Ke Li , Rongrong Zhou , Zhan Liang , Yingying Zhang , Tingting Cheng , Zi-Jian Zhang","doi":"10.1016/j.compmedimag.2024.102385","DOIUrl":"https://doi.org/10.1016/j.compmedimag.2024.102385","url":null,"abstract":"<div><p>Due to the high expenses involved, 4D-CT data for certain patients may only include five respiratory phases (0%, 20%, 40%, 60%, and 80%). This limitation can affect the subsequent planning of radiotherapy due to the absence of lung tumor information for the remaining five respiratory phases (10%, 30%, 50%, 70%, and 90%). This study aims to develop an interpolation method that can automatically derive tumor boundary contours for the five omitted phases using the available 5-phase 4D-CT data. The dynamic mode decomposition (DMD) method is a data-driven and model-free technique that can extract dynamic information from high-dimensional data. It enables the reconstruction of long-term dynamic patterns using only a limited number of time snapshots. The quasi-periodic motion of a deformable lung tumor caused by respiratory motion makes it suitable for treatment using DMD. The direct application of the DMD method to analyze the respiratory motion of the tumor is impractical because the tumor is three-dimensional and spans multiple CT slices. To predict the respiratory movement of lung tumors, a method called uniform angular interval (UAI) sampling was developed to generate snapshot vectors of equal length, which are suitable for DMD analysis. The effectiveness of this approach was confirmed by applying the UAI-DMD method to the 4D-CT data of ten patients with lung cancer. The results indicate that the UAI-DMD method effectively approximates the lung tumor’s deformable boundary surface and nonlinear motion trajectories. The estimated tumor centroid is within 2 mm of the manually delineated centroid, a smaller margin of error compared to the traditional BSpline interpolation method, which has a margin of 3 mm. This methodology has the potential to be extended to reconstruct the 20-phase respiratory movement of a lung tumor based on dynamic features from 10-phase 4D-CT data, thereby enabling more accurate estimation of the planned target volume (PTV).</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102385"},"PeriodicalIF":5.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140638590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiayi Zhu , Bart Bolsterlee , Brian V.Y. Chow , Yang Song , Erik Meijering
{"title":"Hybrid dual mean-teacher network with double-uncertainty guidance for semi-supervised segmentation of magnetic resonance images","authors":"Jiayi Zhu , Bart Bolsterlee , Brian V.Y. Chow , Yang Song , Erik Meijering","doi":"10.1016/j.compmedimag.2024.102383","DOIUrl":"https://doi.org/10.1016/j.compmedimag.2024.102383","url":null,"abstract":"<div><p>Semi-supervised learning has made significant progress in medical image segmentation. However, existing methods primarily utilize information from a single dimensionality, resulting in sub-optimal performance on challenging magnetic resonance imaging (MRI) data with multiple segmentation objects and anisotropic resolution. To address this issue, we present a Hybrid Dual Mean-Teacher (HD-Teacher) model with hybrid, semi-supervised, and multi-task learning to achieve effective semi-supervised segmentation. HD-Teacher employs a 2D and a 3D mean-teacher network to produce segmentation labels and signed distance fields from the hybrid information captured in both dimensionalities. This hybrid mechanism allows HD-Teacher to utilize features from 2D, 3D, or both dimensions as needed. Outputs from 2D and 3D teacher models are dynamically combined based on confidence scores, forming a single hybrid prediction with estimated uncertainty. We propose a hybrid regularization module to encourage both student models to produce results close to the uncertainty-weighted hybrid prediction to further improve their feature extraction capability. Extensive experiments of binary and multi-class segmentation conducted on three MRI datasets demonstrated that the proposed framework could (1) significantly outperform state-of-the-art semi-supervised methods (2) surpass a fully-supervised VNet trained on substantially more annotated data, and (3) perform on par with human raters on muscle and bone segmentation task. Code will be available at <span>https://github.com/ThisGame42/Hybrid-Teacher</span><svg><path></path></svg>.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102383"},"PeriodicalIF":5.7,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0895611124000600/pdfft?md5=7ce6bdbb1f79301198bf452b8d9fd71f&pid=1-s2.0-S0895611124000600-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140631203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}