Huiyu Zhao , Wangshu Zhu , Luyuan Jin , Yijia Xiong , Xiao Deng , Yuehua Li , Weiwen Zou
{"title":"基于语义导向生成对抗网络的冠状动脉ct血管造影钙脱影研究","authors":"Huiyu Zhao , Wangshu Zhu , Luyuan Jin , Yijia Xiong , Xiao Deng , Yuehua Li , Weiwen Zou","doi":"10.1016/j.compmedimag.2025.102515","DOIUrl":null,"url":null,"abstract":"<div><div>Calcium blooming artifact produced by calcified plaque in coronary computed tomography angiography (CCTA) is a significant contributor to false-positive results for radiologists. Most previous research focused on general noise reduction of CT images, while performance was limited when facing the blooming artifact. To address this problem, we designed an automated and robust semantics-oriented adversarial network that fully exploits the calcified plaques as semantic regions in the CCTA. The semantic features were extracted using a feature extraction module and implemented through a global–local fusion module, a generator with a semantic similarity module, and a matrix discriminator. The effectiveness of our network was validated both on a virtual and a clinical dataset. The clinical dataset consists of 372 CCTA and corresponding coronary angiogram (CAG) results, with the assistance of two cardiac radiologists (with 10 and 21 years of experience) for clinical evaluation. The proposed method effectively reduces artifacts for three major coronary arteries and significantly improves the specificity and positive predictive value for the diagnosis of coronary stenosis.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"122 ","pages":"Article 102515"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium deblooming in coronary computed tomography angiography via semantic-oriented generative adversarial network\",\"authors\":\"Huiyu Zhao , Wangshu Zhu , Luyuan Jin , Yijia Xiong , Xiao Deng , Yuehua Li , Weiwen Zou\",\"doi\":\"10.1016/j.compmedimag.2025.102515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Calcium blooming artifact produced by calcified plaque in coronary computed tomography angiography (CCTA) is a significant contributor to false-positive results for radiologists. Most previous research focused on general noise reduction of CT images, while performance was limited when facing the blooming artifact. To address this problem, we designed an automated and robust semantics-oriented adversarial network that fully exploits the calcified plaques as semantic regions in the CCTA. The semantic features were extracted using a feature extraction module and implemented through a global–local fusion module, a generator with a semantic similarity module, and a matrix discriminator. The effectiveness of our network was validated both on a virtual and a clinical dataset. The clinical dataset consists of 372 CCTA and corresponding coronary angiogram (CAG) results, with the assistance of two cardiac radiologists (with 10 and 21 years of experience) for clinical evaluation. The proposed method effectively reduces artifacts for three major coronary arteries and significantly improves the specificity and positive predictive value for the diagnosis of coronary stenosis.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"122 \",\"pages\":\"Article 102515\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611125000242\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000242","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Calcium deblooming in coronary computed tomography angiography via semantic-oriented generative adversarial network
Calcium blooming artifact produced by calcified plaque in coronary computed tomography angiography (CCTA) is a significant contributor to false-positive results for radiologists. Most previous research focused on general noise reduction of CT images, while performance was limited when facing the blooming artifact. To address this problem, we designed an automated and robust semantics-oriented adversarial network that fully exploits the calcified plaques as semantic regions in the CCTA. The semantic features were extracted using a feature extraction module and implemented through a global–local fusion module, a generator with a semantic similarity module, and a matrix discriminator. The effectiveness of our network was validated both on a virtual and a clinical dataset. The clinical dataset consists of 372 CCTA and corresponding coronary angiogram (CAG) results, with the assistance of two cardiac radiologists (with 10 and 21 years of experience) for clinical evaluation. The proposed method effectively reduces artifacts for three major coronary arteries and significantly improves the specificity and positive predictive value for the diagnosis of coronary stenosis.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.