IOP Conference Series: Earth and Environmental Science最新文献

筛选
英文 中文
A method for fast and accurate prediction of wind turbine thrust coefficients using classical momentum theory and power curve 利用经典动量理论和功率曲线快速准确预测风力涡轮机推力系数的方法
IOP Conference Series: Earth and Environmental Science Pub Date : 2024-07-01 DOI: 10.1088/1755-1315/1372/1/012021
V. Tai, Yong Chai Tan, L. K. Moey, Norzaura Abd Rahman, David Baglee, L. Saw
{"title":"A method for fast and accurate prediction of wind turbine thrust coefficients using classical momentum theory and power curve","authors":"V. Tai, Yong Chai Tan, L. K. Moey, Norzaura Abd Rahman, David Baglee, L. Saw","doi":"10.1088/1755-1315/1372/1/012021","DOIUrl":"https://doi.org/10.1088/1755-1315/1372/1/012021","url":null,"abstract":"\u0000 The planning and development of windfarms require accurate prediction of the thrust coefficient (cT\u0000 ) of wind turbines, which significantly affects the downstream wake. Traditional methods, such as blade element momentum theory (BEMT), often necessitate detailed geometric information of wind turbines for cT\u0000 computation, information that is not frequently available, especially in the early stages of windfarm planning. This paper aims to address this challenge by presenting a novel and efficient approach to predict cT\u0000 for horizontal-axis wind turbines (HAWTs). The proposed method integrates classical momentum theory with power curve data to estimate the average axial induction factor (a), thereby enabling the calculation of cT\u0000 without requiring detailed geometric information of HAWTs. The method was validated against thirty-five existing pitch-controlled HAWTs, with R2 values ranging from 0.9604 to 0.9989. This validation confirms the accuracy of the method, making it a viable alternative to traditional techniques that demand comprehensive wind turbine geometric details. The method has demonstrated both rapidity and precision in cT\u0000 computation for turbine wake analysis, ensuring high levels of prediction accuracy and potentially lowering the barrier to entry for windfarm development. Unlike existing models predominantly focused on wind turbine power curves, cT\u0000 modelling has largely been overlooked. This study makes a unique contribution to the field by proposing a novel method for cT\u0000 prediction, thereby filling a critical gap in windfarm planning and development. However, while the study shows promising results, further research is warranted to explore its applicability in diverse windfarm scenarios and turbine configurations.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141709588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On application of molecular dynamics simulation for studying the effect of temperature and heating rate on HTL of biomass 应用分子动力学模拟研究温度和加热速率对生物质热液化的影响
IOP Conference Series: Earth and Environmental Science Pub Date : 2024-07-01 DOI: 10.1088/1755-1315/1372/1/012051
Thuat T. Trinh, Khanh-Quang Tran
{"title":"On application of molecular dynamics simulation for studying the effect of temperature and heating rate on HTL of biomass","authors":"Thuat T. Trinh, Khanh-Quang Tran","doi":"10.1088/1755-1315/1372/1/012051","DOIUrl":"https://doi.org/10.1088/1755-1315/1372/1/012051","url":null,"abstract":"\u0000 Hydrothermal liquefaction (HTL) of biomass has garnered increasing attention as a promising pathway for converting solid biomass to liquid biofuels and valuable chemical products. HTL involves processing of biomass in water at high-temperature and high-pressure conditions. The heating rate during this process plays a critical role in determining the yield and composition of the liquefied products. To probe the impact of heating rate, we develop a detailed atomistic model biomass by using cellulose as model compound and place it in a simulated HTL reactor. Our Reactive molecular dynamics simulations are capable of capturing the dynamic chemical reactions and structural changes during HTL. The effect of reaction temperature and heating rates on reaction pathways, product distributions, and reaction kinetics is rigorously analyzed. Our findings reveal that the reaction temperature and heating rate significantly influences the extent of cellulose degradation and the composition of bio-oil product.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"12 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141715182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 emission mitigation of a hybrid photovoltaic and cogeneration system in computer hardware manufacturing industry: A case study in Thailand 计算机硬件制造业中光伏与热电联产混合系统的二氧化碳减排:泰国案例研究
IOP Conference Series: Earth and Environmental Science Pub Date : 2024-07-01 DOI: 10.1088/1755-1315/1372/1/012063
D. Manirampa, P. Chaiwiwatworakul
{"title":"CO2 emission mitigation of a hybrid photovoltaic and cogeneration system in computer hardware manufacturing industry: A case study in Thailand","authors":"D. Manirampa, P. Chaiwiwatworakul","doi":"10.1088/1755-1315/1372/1/012063","DOIUrl":"https://doi.org/10.1088/1755-1315/1372/1/012063","url":null,"abstract":"\u0000 In the wake of COP26 and the growing urgency of addressing climate change, achieving carbon neutrality by 2050 has become a central global objective. This imperative extends to industries like computer hardware manufacturing, which are now actively pursuing decarbonization strategies through the strategic adoption of renewable energy sources and energy efficiency enhancements. This research paper assessed the CO2 emission mitigation potential of a hybrid system of photovoltaic (PV) roof and cogeneration where a large factory of computer hardware manufacturing in tropical Thailand was selected as a study site. On one hand, a one-Megawatt photovoltaic system was installed over the roof of the production building to generate electricity from solar radiation to serve the building. On the other hand, a twenty-four-Megawatt cogeneration system of gas engines as the prime mover was used to supply power to meet the building’s electricity demand. Waste heat from the gas engine was used by the absorption chiller to generate chilled water for cooling inside the building. Based on the system equipment specifications, the annual simulation using Thailand’s solar radiation showed that the installed photovoltaic system could generate electricity of 1,412.4 MWhelec/year while the implementation of the absorption chillers for cooling helped to reduce the electrical energy consumed by the traditional electric chiller by 10,211.4 MWhelec/year. In our study case where the CO2 emission of the grid power was 0.4758 kgCO2/kWhelec in the year 2022 and was reduced to 0.350 kgCO2/kWhelec in the year 2050, the total CO2 emission mitigation from the hybrid photovoltaic and cogeneration system with the genset efficiency of 50% and the waste heat recovery of 60% could reduce approximately 207,388.5TonCO2 for over 20 years as compared to the scenario where the grid electricity alone powered the building. These findings underscored the critical role of the proposed hybrid system in addressing the climate crisis and exemplified how the industry could make meaningful strides toward more environmental sustainability.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"61 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141695548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation on solidification process of molten salt-based phase change material as thermal energy storage medium for application in Stirling engine 模拟作为斯特林发动机热能储存介质的熔盐相变材料的凝固过程
IOP Conference Series: Earth and Environmental Science Pub Date : 2024-07-01 DOI: 10.1088/1755-1315/1372/1/012012
G. Putra, N. Putra
{"title":"Simulation on solidification process of molten salt-based phase change material as thermal energy storage medium for application in Stirling engine","authors":"G. Putra, N. Putra","doi":"10.1088/1755-1315/1372/1/012012","DOIUrl":"https://doi.org/10.1088/1755-1315/1372/1/012012","url":null,"abstract":"\u0000 Thermal energy storage technologies have been widely used to mitigate intermittency from renewable energy such as solar energy. Phase change material (PCM) is a certain material that can be used as a heat storage medium and is available in a wide range of operating temperatures. Molten salt is one of the PCMs that has the advantage of a very high operating temperature. The PCM solidification simulation based on HitecXL molten salt using COMSOL Multiphysics software will be carried out with variations in heat absorption of 1 - 5 kW/m2, assuming constant heat absorption. The results show that the PCM solidification process starts from the surface of the Stirling engine heat exchanger pipe. The part of the PCM that has been solidified will fall following the direction of gravity and cause a phenomenon such as a droplet. The flow that occurs is a natural flow caused by the buoyancy force due to changes in density due to temperature gradients in the solidification process. The time required for the PCM to completely solidify is closely related to the amount of heat absorption. The greater the heat absorption from the pipe, the faster the PCM to fully solidified.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141689154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies and models for optimal EV charging station site selection 优化电动汽车充电站选址的策略和模型
IOP Conference Series: Earth and Environmental Science Pub Date : 2024-07-01 DOI: 10.1088/1755-1315/1372/1/012106
B. Harshil, G. Nagababu
{"title":"Strategies and models for optimal EV charging station site selection","authors":"B. Harshil, G. Nagababu","doi":"10.1088/1755-1315/1372/1/012106","DOIUrl":"https://doi.org/10.1088/1755-1315/1372/1/012106","url":null,"abstract":"\u0000 In numerous countries worldwide, adopting electric vehicles (EVs) is gaining momentum as a proactive measure to mitigate the detrimental environmental impacts of traditional fuel-powered automobiles. This shift drives exponential growth in the adoption of EVs, prompting the need for comprehensive analysis to optimize charging infrastructure requirements. Developing reliable and sustainable charging infrastructure depends on practical and strategic site selection of EV charging stations. The main challenge is finding a charging solution that maximizes efficiency within limited financial resources. The present review critically assesses methodologies for selecting optimal EV charging station sites, considering technical, environmental, social, and economic factors. Special emphasis is given to social factors such as population density and service accessibility, as well as technical factors like vehicle battery life, charging time, and grid capacity. Environmental impact and feasibility are also vital criteria under evaluation. Through a synthesis of insights from various studies, this review provides a comprehensive overview of the existing models used in EV charging infrastructure site selection. The findings contribute valuable insights for decision-makers, city planners, and other stakeholders in creating sustainable EV charging networks amidst the dynamic landscape of electric mobility.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"23 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141701817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental soil matrix, vortex and oil skimming technology as a tertiary treatment of wastewater effluent 试验性土壤基质、涡流和撇油技术作为废水三级处理技术
IOP Conference Series: Earth and Environmental Science Pub Date : 2024-07-01 DOI: 10.1088/1755-1315/1372/1/012043
C. Tugade, C. Pescos, C.A.L. Caliwag, C.D.V. Centeno, J.D.C. Tan, Q.M.D Malveda, R.C. Olivares, R.M. Chavez, L. Carrillo
{"title":"Experimental soil matrix, vortex and oil skimming technology as a tertiary treatment of wastewater effluent","authors":"C. Tugade, C. Pescos, C.A.L. Caliwag, C.D.V. Centeno, J.D.C. Tan, Q.M.D Malveda, R.C. Olivares, R.M. Chavez, L. Carrillo","doi":"10.1088/1755-1315/1372/1/012043","DOIUrl":"https://doi.org/10.1088/1755-1315/1372/1/012043","url":null,"abstract":"\u0000 Water is a necessary resource that must be carefully managed. Hazardous chemicals are produced with increased industrial activities and contamination has been detrimental to both people and the environment. An experimental investigation was performed to evaluate the efficiency of vortex technology, soil matrices, and oil skimmer separately for combination as a tertiary wastewater treatment in the design of a phytoremediation system. The objective of the study is to evaluate the performance of each component in removing oil and grease, reducing the concentration of ammonia, nitrate, and phosphate; quality control measures for dissolved oxygen, total dissolved solids, and chemical oxygen demand. One-way ANOVA, kinetics analysis, and adoption isotherm analysis were applied to determine the significance of the parameters. Analysis of results for the oil skimmer exhibited an efficiency of 96% in removing oil and grease after 5 hours of treatment. The vortex technology results were fluctuating with percentage removal of nitrates at 11% while ammonia with an initial concentration of 5.24 mg/L was reduced to 4.12 mg/L. Phosphate decreased after treatment from an initial of 0.87 mg/L to 0.809 mg/L. The analysis of pollutant concentration in the soil matrix after a 5-day period indicated a greater efficiency compared to the vortex technology in the removal of ammonia and phosphate. The ammonia concentration decreased from 18.7 mg/L and 21.4 mg/L to <0.1 mg/L. Similarly, phosphate concentration decreased from 15.5 mg/L to 1.13 mg/L and from 32.5 mg/L to 0.948 mg/L. The research finding underscores the efficiency of the soil matrix in removing ammonia and phosphate but recommends the need for additional intervention to lower nitrate. Overall, the three technologies showed potential and greater efficiencies in mitigating wastewater streams resulting in a notable reduction in oil and pollutant concentrations.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"11 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141715941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of tube heat pipe solar collector with phase change material for seawater desalination system 海水淡化系统中使用相变材料的管式热管太阳能集热器的性能
IOP Conference Series: Earth and Environmental Science Pub Date : 2024-07-01 DOI: 10.1088/1755-1315/1372/1/012014
R.A. Kusumadewi, N. Putra, S. Moersidik, S. Laksono, G. Putra, A.J.P. Utomo
{"title":"Performance of tube heat pipe solar collector with phase change material for seawater desalination system","authors":"R.A. Kusumadewi, N. Putra, S. Moersidik, S. Laksono, G. Putra, A.J.P. Utomo","doi":"10.1088/1755-1315/1372/1/012014","DOIUrl":"https://doi.org/10.1088/1755-1315/1372/1/012014","url":null,"abstract":"\u0000 Unlimited seawater resources resulted for utilization of desalination systems using seawater treatment process emerges as a promising technology for addressing the continually escalating need for freshwater. At present, the most notable desalination processes that are reverse osmosis, membrane distillation, multistage desalination, multiple-effect distillation, and electrodialysis, require energy generated by fossil fuels to obtain fresh water. Among the noteworthy sources of renewable energy, solar energy stands out with its manifold applications. The use of solar energy has strong advantages, such as a low maintenance and operation costs. In this study, a novel solar desalination system is introduced, which integrates tube heat pipe solar collector (THP-SC) equipped with phase change material (PCM). The aim of this research is to evaluate the performance of THP-SC equipped with PCM and without PCM. The feedwater sample used is water. Parameters measured for 24 hours were temperature, solar radiation, ambient air temperature, relative humidity, and wind speed. The greatest recorded solar radiation at noon (11.52 a.m.) is 900 W/m2 while the maximum recorded ambient temperature at 12.45 p.m. is 35.2°C. The experimental study showed that from morning to afternoon (06.00-15.00), the temperature of the evaporator section of the heat pipe on the THP-SC without PCM (46.70-56.21°C) was higher than the temperature of the evaporator section of the heat pipe on the THP-SC with PCM (33.18-44.43°C). This is because solar radiation will heat the PCM first before heating the heat pipe. PCM can store heat energy and release it at night. This can be seen from the water temperature in THP-SC with PCM (28.39-36.03) which is higher than the water temperature in THP-SC without PCM (27.17-34.01) at night, but the temperature difference is not significant. This can be caused by the large amount of heat lost to the environment in THP-SC with PCM, it is best to coat the heat pipe tube with insulation and create a vacuum to reduce heat loss.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"62 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141716404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of variations in salinity levels on the biocementing process on soil improvement of liquefaction potential 盐度变化对生物固结法改良土壤液化潜力的影响
IOP Conference Series: Earth and Environmental Science Pub Date : 2024-07-01 DOI: 10.1088/1755-1315/1372/1/012071
N. A. Diana, R. A. A. Soemitro, J. J. Ekaputri, T. R. Satrya, D. Warnana
{"title":"The influence of variations in salinity levels on the biocementing process on soil improvement of liquefaction potential","authors":"N. A. Diana, R. A. A. Soemitro, J. J. Ekaputri, T. R. Satrya, D. Warnana","doi":"10.1088/1755-1315/1372/1/012071","DOIUrl":"https://doi.org/10.1088/1755-1315/1372/1/012071","url":null,"abstract":"\u0000 This article presents an innovative method of soil improvement cementing to increase the shearing strength of very loose sand with 10% relative density (Dr) in saline conditions. Salt in saline soils destroys the stability of stable soils. In contrast, the salt content reduces the level of homogenization of unstable soils, causes technical problems in calcareous soils, and affects their stability, especially if the salt content is more than 3.0%. The variations in salinity levels can determine the optimal percentage of salt levels in the stabilized soil. The application of biocementation to saline soil can drastically increase the shear strength of soil in soil with potential liquefaction in coastal areas due to earthquakes. Calcium carbonate deposition (MICP) in the microbial-induced biocementing process is a new method that utilizes the metabolic processes of microorganisms in this study using Bacillus sp. In the MICP process, microbes need Ca2+ ions obtained from fly ash, which can produce SiO2 and CaO to produce CaCO3 for binding between particles. Soil improvement was carried out by combining initial soil, fly ash, mycobacteria, and variations in salinity obtained from NaCl with varying percentages of 0%, 1%, 2%, and 3,4% after testing at curing times 7, 14, 21, and 28 days. The research samples from the UCS and direct shear tests showed that the shear and UC strength that were treated increased. The highest increase in shear strength was at 3,4% salinity at 28 days of 80.9°. CaCO3 production resulting from the binding between particles in the biocementing reaction can be seen from the results of SEM tests. Soil improvement using biocementing in this study resulted in an effective increase in the strength of loose sand soil in salinity condition.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"71 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141697580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life cycle analysis of a network of small modular reactors 小型模块化反应堆网络的生命周期分析
IOP Conference Series: Earth and Environmental Science Pub Date : 2024-07-01 DOI: 10.1088/1755-1315/1372/1/012059
Carlo L. Vinoya, A. Ubando, A. Culaba
{"title":"Life cycle analysis of a network of small modular reactors","authors":"Carlo L. Vinoya, A. Ubando, A. Culaba","doi":"10.1088/1755-1315/1372/1/012059","DOIUrl":"https://doi.org/10.1088/1755-1315/1372/1/012059","url":null,"abstract":"\u0000 Small modular reactors are highly-touted as the next-generation nuclear reactors that can provide alternatives to baseload energy sources such as coal and gas. Lesser dependence on these energy resources may enable faster development in poorer countries. The small modular reactors’ modularity allows for faster construction times vis-à-vis large reactors. Together with this, as more of the same reactors are constructed, costs are expected to decrease with learnings made from the experience of producing the previous one. From a technological point of view, Small modular reactors are capable of generating energy at a lower cost compared to large reactors due to the lesser capital costs that arise from faster construction times. However, it is important to understand the overall environmental impact of small modular reactors when used as a network of reactors to generate energy. Life-cycle analysis is an accepted methodology to assess various environmental impacts of technology from cradle to grave. In this work, a case study of the development of a network of small modular reactors with a unique supply chain is presented. Since small modular reactors can be sited separately, and with its comparatively higher number of reactors and plants, the same network of small modular reactors has a higher carbon footprint than a single large reactor. However, this result should be carefully considered together with other criteria that affect the decision-making in the construction and development of small modular reactors or large reactors as these may outweigh marginally higher carbon footprints, such as economic, social, and political benefits.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"5 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141704831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of alkali metal cations in alkaline iron battery electrodes 碱金属阳离子对碱性铁电池电极的影响
IOP Conference Series: Earth and Environmental Science Pub Date : 2024-07-01 DOI: 10.1088/1755-1315/1372/1/012015
D. E. D. Loresca, J. A. Paraggua
{"title":"Effect of alkali metal cations in alkaline iron battery electrodes","authors":"D. E. D. Loresca, J. A. Paraggua","doi":"10.1088/1755-1315/1372/1/012015","DOIUrl":"https://doi.org/10.1088/1755-1315/1372/1/012015","url":null,"abstract":"\u0000 Rechargeable alkaline iron batteries (e.g. Ni-Fe and Fe-air) have been extensively studied recently as viable energy storage systems for renewable energy sources. However, inherent issues such as passivation of the iron and parasitic hydrogen evolution reaction (HER) on the electrode surface limit their full capability. Multiple approaches to improving iron electrode performance have been conducted, few of which focused on electrolyte composition. While alkali metal (AM) cations on the electrolyte do not directly participate in the electrochemical reactions, their intrinsic characteristics can dictate the performance of the electrode. Investigating the interface interactions and electrical double layer (EDL) structure can provide a deeper insight into the operation of iron electrodes in an alkaline solution. In this work, we investigated the effect of alkali metal cations (Li+, Na+, K+, Cs+) in the electrolyte solution in inhibiting passivation and HER on electrodeposited iron on carbon paper (Fe/CP) electrodes. The electrochemical measurements show that the iron redox and HER activities of the electrode increased with increasing cation size in the electrolyte. The non-covalent interactions between hydrated alkali metal cations and adsorbed OH species resulted to the formation of quasi-adsorbed clusters which can block active sites on the electrode surface. Furthermore, the concentration of these clusters decreases with increasing cation size which resulted to higher EDL capacitance and ECSA values of the electrode. The results of this work provide a better understanding of the surface reactions on iron electrodes and can help in developing novel techniques for suppressing passivation and parasitic HER on rechargeable alkaline iron batteries.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"28 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141696886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信