{"title":"On application of molecular dynamics simulation for studying the effect of temperature and heating rate on HTL of biomass","authors":"Thuat T. Trinh, Khanh-Quang Tran","doi":"10.1088/1755-1315/1372/1/012051","DOIUrl":null,"url":null,"abstract":"\n Hydrothermal liquefaction (HTL) of biomass has garnered increasing attention as a promising pathway for converting solid biomass to liquid biofuels and valuable chemical products. HTL involves processing of biomass in water at high-temperature and high-pressure conditions. The heating rate during this process plays a critical role in determining the yield and composition of the liquefied products. To probe the impact of heating rate, we develop a detailed atomistic model biomass by using cellulose as model compound and place it in a simulated HTL reactor. Our Reactive molecular dynamics simulations are capable of capturing the dynamic chemical reactions and structural changes during HTL. The effect of reaction temperature and heating rates on reaction pathways, product distributions, and reaction kinetics is rigorously analyzed. Our findings reveal that the reaction temperature and heating rate significantly influences the extent of cellulose degradation and the composition of bio-oil product.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"12 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrothermal liquefaction (HTL) of biomass has garnered increasing attention as a promising pathway for converting solid biomass to liquid biofuels and valuable chemical products. HTL involves processing of biomass in water at high-temperature and high-pressure conditions. The heating rate during this process plays a critical role in determining the yield and composition of the liquefied products. To probe the impact of heating rate, we develop a detailed atomistic model biomass by using cellulose as model compound and place it in a simulated HTL reactor. Our Reactive molecular dynamics simulations are capable of capturing the dynamic chemical reactions and structural changes during HTL. The effect of reaction temperature and heating rates on reaction pathways, product distributions, and reaction kinetics is rigorously analyzed. Our findings reveal that the reaction temperature and heating rate significantly influences the extent of cellulose degradation and the composition of bio-oil product.