Zeeshan Patel, Sankalp Gharat, M. Altabakha, A. Ashames, S. Boddu, M. Momin
{"title":"Recent Advancements in Electrospun Nanofibers for Wound Healing: Polymers, Clinical and Regulatory Perspective.","authors":"Zeeshan Patel, Sankalp Gharat, M. Altabakha, A. Ashames, S. Boddu, M. Momin","doi":"10.1615/critrevtherdrugcarriersyst.2022039840","DOIUrl":"https://doi.org/10.1615/critrevtherdrugcarriersyst.2022039840","url":null,"abstract":"Wound management is an unmet therapeutic challenge and a global healthcare burden. Current treatment strategies provide limited efficiency in wound management, thus undergoing constant evolution in the treatment approaches. As wound healing is a complex physiological process involving precise synchronization of various phases like hemostasis, inflammation and remodelling, which necessitates innovative treatment strategies. Nanotechnology platforms like polymeric nanofibers (NFs) offer a promising solution for wound management. NFs contain a porous mesh-like structure that mimics the natural extracellular matrix and promote the cell adhesion and proliferation in the wound bed, thus displaying a great potential as a wound healing scaffold. Electrospinning is a simple, versatile and scalable technique for producing highly porous and tuneable NFs with a high surface area. Electrospun NFs are presenting extensive application in wound management, especially for burns and diabetic foot ulcers. This review briefly discusses the wound physiology and conventional treatment strategies. It also provides an overview of the electrospinning process and its principle, highlighting the application of electrospun polymeric NFs in wound management. The authors have made an attempt to emphasizes on the clinical challenges and future perspectives along with regulatory aspects of NFs as a wound dressing.","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"39 4 1","pages":"83-118"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67437589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Armamentarium in Drug Delivery for Colorectal Cancer.","authors":"Asad Ali, Juber Akhtar, Usama Ahmad, Abdul Samad Basheer, Neha Jaiswal, Afroz Jahan","doi":"10.1615/CritRevTherDrugCarrierSyst.2022039241","DOIUrl":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2022039241","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is the second most common cause of cancer related deaths in the United States. However, more than half of all incidence and mortality are caused by risk factors such as smoking, unhealthy diet, excessive alcohol consumption, inactivity, and excess weight, and thus can be protected. CRC morbidity and mortality can also be reduced by proper screening and monitoring. Over the last few years the amalgamation of nanotechnology with healthcare system has brought about the potential to administer the delivery of certain therapeutic drugs to cancer cells without affecting normal tissues. Recent strategies combine the diagnostic and therapeutic approaches to improve the overall performance of cancer nanomedicines. Targeted cancer nanotherapeutics provides many more opportunities for the selective detection of toxic chemicals within cancer cells. The distinctive features of nanoparticles, such as their small size, large surface to volume ratio, and the ability of nanoparticles to achieve several interactions of ligands at surface, offer great benefits of nanomedicines to treat various types of cancers. This review highlights the molecular mechanisms of colorectal carcinogenesis and discusses various key concepts in the development of nanotherapeutics targeted for CRC treatment.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"40 1","pages":"1-48"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40684465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reena Thakur, Chander Raman Suri, Indu Pal Kaur, Praveen Rishi
{"title":"Peptides as Diagnostic, Therapeutic, and Theranostic Tools: Progress and Future Challenges.","authors":"Reena Thakur, Chander Raman Suri, Indu Pal Kaur, Praveen Rishi","doi":"10.1615/CritRevTherDrugCarrierSyst.2022040322","DOIUrl":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2022040322","url":null,"abstract":"<p><p>Peptides are emerging as a promising candidate for therapeutic as well as diagnostic applications within the domain of clinical and scientific research. They are recognized for being highly selective, sensitive and efficacious with minimal or no toxicity. Small size, non-immunogenicity, ease of synthesis and huge scope of modification are some of the well-established properties of peptides, which make them an excellent alternative to not only small drug molecules but also to protein-based biopharmaceuticals such as antibodies and enzymes. The attractive pharmacological profile and intrinsic properties of peptides also make them an interesting diagnostic tool for imaging at the molecular and cellular levels. Molecular imaging coupled with targeted therapy using peptides as theranostics is a two-edged sword. Besides, traditional peptide formats, multifunctional newer peptide designs with improved pharmacokinetics and targetability are also being explored presently. In this review, we come up with a comprehensive summary of the latest progress on peptides and their potential applications in therapeutics and diagnosis for infectious and non-infectious diseases. The last part of the review discusses suitable carrier systems for the delivery of peptides along with highlighting the future challenges.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"40 1","pages":"49-100"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40684466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Getting into the Brain: Are We in Yet or Just Knocking at the Door?","authors":"K. Nagpal, Dhirender Singh, Amit Bhatia, P. Kumar","doi":"10.1615/critrevtherdrugcarriersyst.2021038918","DOIUrl":"https://doi.org/10.1615/critrevtherdrugcarriersyst.2021038918","url":null,"abstract":"Nanomedicine, a promising addition to the spectrum of biomedicine, has viewed countless breakthroughs in the implementations of \"site-specific\" drug delivery. The promises of nanomedicines revolve around their unique physicochemical properties that permit the transport of therapeutics to the desired site of action, improve the pharmacokinetic endpoint, maximize the pharmacological influence of treatment, and overcome the limitation of remedies that otherwise would impede the therapeutic effectiveness. One of most insurmountable challenge possessed by conventional drug-delivery in getting therapeutics across the central-nervous-system is to conquer the harsh passage of the blood-brain barrier (BBB). Many published studies revealed BBB to be a complex, dynamic interface that acclimatizes to the needs of the central nervous system (CNS). These physical and biochemical barriers pose a significant challenge to the effective management of brain-related disorders such as neurodegenerative diseases. This challenge is widely accepted and defeated with the advent of a new class of brain-targeted nanomedicines. This review is an effort to overview the key research trends in nanotechnology over the past decade concerning the BBB as a regulatory interface and factors affecting CNS drug delivery. The review further summarized the specific diversity of various nanomedicinal approaches, the critical and elementary structural component of their design, the surface engineering of vehicles carrying drug at the nanoscale, selected current clinical successes, and future prospects along with hidden perils.","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"47 1","pages":"1-44"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67437525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vivek Basudkar, Sankalp Gharat, M. Momin, Mihika Shringarpure
{"title":"A Review of Anti-Aging Nanoformulations: Recent Developments in Excipients for Nanocosmeceuticals and Regulatory Guidelines.","authors":"Vivek Basudkar, Sankalp Gharat, M. Momin, Mihika Shringarpure","doi":"10.1615/CritRevTherDrugCarrierSyst.2021039544","DOIUrl":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2021039544","url":null,"abstract":"Skin aging is the progressive biological process generally characterized by the appearance of wrinkles, age spots, sagging of skin, and dryness. Since skin is an essential part of physical appearance, this has led to increased concerns about skincare. Anti-aging products help in improving the quality and health of the skin by nourishing it. However, due to large particle size they are less efficacious. Nanotechnological approaches for topical anti-aging products have a significant effect on the product performance. Lipidic, polymeric, and metallic nanoparticles have shown potential advantages like enhanced stability and efficacy due to their smaller size. The excipients used in these nanoformulations play an important role in improving the efficacy and shelf-life of the product. The optimal selection of excipients plays a major role in the nanoformulation approach for their enhanced efficacy and stability. For the past three decades the ingredients of natural origin for cosmetic formulations have been widely recognized for being safe and less toxic. The objective of this article is to review the nanoformulations used in anti-aging along with the potential excipients used, currently marketed formulations, and patents filed for cosmetic use. Recent updates related to regulatory aspects of the nanocosmetics have also been highlighted.","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"39 3 1","pages":"45-97"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67437535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javed Ahmad, Md Rizwanullah, Teeja Suthar, Hassan A Albarqi, Mohammad Zaki Ahmad, Parameswara Rao Vuddanda, Mohammad Ahmed Khan, Keerti Jain
{"title":"Receptor-Targeted Surface-Engineered Nanomaterials for Breast Cancer Imaging and Theranostic Applications.","authors":"Javed Ahmad, Md Rizwanullah, Teeja Suthar, Hassan A Albarqi, Mohammad Zaki Ahmad, Parameswara Rao Vuddanda, Mohammad Ahmed Khan, Keerti Jain","doi":"10.1615/CritRevTherDrugCarrierSyst.2022040686","DOIUrl":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2022040686","url":null,"abstract":"<p><p>Breast cancer is one of the most frequently diagnosed cancers in women and the major cause of worldwide cancer-related deaths among women. Various treatment strategies including conventional chemotherapy, immunotherapy, gene therapy, gene silencing and deliberately engineered nanomaterials for receptor mediated targeted delivery of anticancer drugs, antibodies, and small-molecule inhibitors, etc are being investigated by scientists to combat breast cancer. Smartly designed/fabricated nanomaterials are being explored to target breast cancer through enhanced permeation and retention effect; and also, being conjugated with suitable ligand for receptor-mediated endocytosis to target breast cancer for diagnostic, and theranostic applications. These receptor-targeted nanomedicines have shown efficacy to target specific tumor tissue/cells abstaining the healthy tissues/cells from cytotoxic effect of anticancer drug molecules. In the last few decades, theranostic nanomedicines have gained much attention among other nanoparticle systems due to their unique ability to deliver chemotherapeutic as well as diagnostic agents, simultaneously. Theranostic nanomaterials are emerging as novel paradigm with ability for concurrent delivery of imaging (with contrasting agents), targeting (with biomarkers), and anticancer therapeutics with one delivery system (as cancer theranostics) and can transpire as promising strategy to overcome various hurdles for effective management of breast cancer including its most aggressive form, triple-negative breast cancer.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"39 6","pages":"1-44"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40649106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploration of 3D Printing of Anti-Infective Urinary Catheters: Materials and Approaches to Combat Catheter-Associated Urinary Tract Infections (CAUTIs) - A Review.","authors":"Archana Menon, Rubini Durairajan, Ramyadevi Durai, Nithyanand Paramasivam, VedhaHari B Narayanan","doi":"10.1615/CritRevTherDrugCarrierSyst.2022040452","DOIUrl":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2022040452","url":null,"abstract":"<p><p>Three-dimensional (3D) printing is a pioneering technology that has gained increased popularity in the fields of tissue engineering, drug design, drug delivery systems and biomedical devices. Thus, it enables us to explore this technique for fabricating 3D-printed catheters. Owing to its enhanced productivity and cost-efficiency, this technique can be utilized to fabricate any material for manufacturing or designing catheters with antimicrobial properties. From 1930s, Foley's catheter had been widely used to drain the urinary bladder of patients with impaired bladder function. Despite the complications like catheter-associated urinary tract infections (CAUTIs), kidney damage, chronic infections, encrustations and personal discomfort during inflation of the balloon, Foley's catheter was used universally without any changes in product design. Currently, marketed catheters have been reported for reducing CAUTI, but the prevention of limitations by coating drugs onto the catheter is very expensive. Altering the physical properties of the catheter by biopolymer blend might ease the discomfort. Thus, new technologies have to be adopted to manufacture ideal catheters that are biocompatible and provide antimicrobial and anti-fouling properties. Herein, we provide an overview of 3D printing techniques along with different materials opted for manufacturing catheters to overcome the existing challenges and limitations.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"39 5","pages":"51-82"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40717501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qurrat-Ul-Ain Khan, Muhammad Irfan Siddique, Muhammad Sarfraz, Khurram Rehman, Muhammad Farhan Sohail, Haliza Katas
{"title":"Oral Dispersible Films from Product Development to End-User Acceptability: A Review.","authors":"Qurrat-Ul-Ain Khan, Muhammad Irfan Siddique, Muhammad Sarfraz, Khurram Rehman, Muhammad Farhan Sohail, Haliza Katas","doi":"10.1615/CritRevTherDrugCarrierSyst.2021036885","DOIUrl":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2021036885","url":null,"abstract":"<p><p>Orodispersible films (ODFs) have served as an emerging platform for the delivery of drugs in a convenient way. They have numerous advantages, the significant one is simplicity of administration for special populations such as pediatric and geriatric as well as patients with swallowing difficulty. Besides, the advantages include accurate dosing and fast action. The ODFs are efficiently designed with detailed knowledge of drug and polymers as well as a suitable selection of method. Many conventional and advance formulation strategies have been used for the development of ODFs. The biopharmaceutical concerns of active pharmaceutical ingredients (APIs) are given in this review in light of the fact that ODFs can be utilized to increase the bioavailability of APIs. The basic critical issues such as good mechanical properties, water solubility of the API and taste masking are very important to be considered during the development of ODFs. The knowledge of critical quality concerns of ODFs will be helpful in the future development of ODF. As ODFs remain in the mouth until complete degradation, taste, texture and mouth-feel are the qualities that in all respects liable for acceptability of the patient. An assortment of packaging choices is also accessible for ODFs. This review focuses on the different critical concerns of ODF related to composition, bio-pharmaceutical, manufacturing, quality tests, packaging and acceptability. Additionally, potential barriers in the ODFs development are discussed in details. Therefore, this review is an informative bundle of ODFs concerns from the product development stage to the end-user acceptability.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"39 1","pages":"33-64"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39746605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymeric Nanoparticles: A Holistic Approach to Combat Tuberculosis.","authors":"Sarita Rani, Ashok Kumar Sharma, Raghu Kasu, Umesh Gupta","doi":"10.1615/CritRevTherDrugCarrierSyst.2022039981","DOIUrl":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2022039981","url":null,"abstract":"<p><p>The emergence of multidrug-resistant (MDR) and extremely drug resistant (XDR) forms of pulmonary tuberculosis (TB) remains a major health challenge in this advanced era of health science. The longer therapy and higher dose of anti-tubercular drugs (ATDs) increases the patient incompliance at its peak levels of intolerance as well as toxicity. In the recent decades, nanoparticulate drug delivery has emerged as an excellent venture for the effective treatment of cancer, infectious diseases, brain as well as TB. Currently, encapsulation and conjugation of therapeutics to polymeric nanoparticles (PNPs) is an attractive strategy to enhance the effectivity of chemotherapeutics and minimize the toxic effects associated with ATDs. Various characteristics of nanoparticles (NPs) such as high stability, high loading efficiency, and high carrying capacity gives preference to the NPs over other drug delivery systems. Multiple or dual drug delivery concept is continuously gaining attention as a strict and favourable requirement of anti-TB therapy. The ideal properties of NPs including controlled or sustained drug release from the matrix enhances drug bioavailability with dose reduction and also enhance compliance of TB patients. Natural and synthetic polymers are playing important role in curtailing the side effects of chemotherapeutics. This review extensively highlights the drug delivery approaches of ATDs and emphasized on the importance and application of PNPs to combat TB.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"39 5","pages":"83-115"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40717502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aisha Shahid, M. M. Khan, Usama Ahmad, M. Haider, Asad Ali
{"title":"Exploring Liposomes for Lung Cancer Therapy.","authors":"Aisha Shahid, M. M. Khan, Usama Ahmad, M. Haider, Asad Ali","doi":"10.1615/critrevtherdrugcarriersyst.2021037912","DOIUrl":"https://doi.org/10.1615/critrevtherdrugcarriersyst.2021037912","url":null,"abstract":"Cancer is referred to as a pleiotropic disease-causing approximately 9.6 million deaths in 2018. Among all cancers, lung cancer was the leading cause of death in 2017, and 12% of fatalities were alone due to lung cancer. The associated risk factors in lung cancer include smoking (80-85%), chronic inflammation in the lungs, COPD, pulmonary fibrosis, environmental and occupational exposure to nickel, arsenic, chromates, etc. Early diagnosed patients' treatment plan includes chemotherapy, immunotherapy, radiotherapy, surgery, and tumor ablation. Many sorts of drug delivery carriers have been used in the past, usually in targeted chemotherapy. Liposomes are spherical shape vesicles containing a lipid bilayer and aqueous core, with potency to encapsulate both hydrophobic and hydrophilic drugs with minimal toxicity. These vesicles have a particle size of 0.02-1000 μm allowing selective passive targeting to the tumor's deeper tissues. Current publications on liposomes highlight their acceptance and best choice among all systems to deliver synthetic and herbal drugs to the lungs. This review focuses on many aspects, which include an in-depth analysis of potential anticancer drugs that have utilized the advantages of liposomes for effective lung carcinomatherapy and devices used to deliver the active agents to the pulmonary tissues. Investigations on ongoing, approved, and failed clinical trials and patents on products related to lung cancer have been highlighted to provide a critical review on the subject.","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"39 1","pages":"1-47"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67437479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}