Czech Journal of Genetics and Plant Breeding最新文献

筛选
英文 中文
Further fine mapping and candidate gene prediction for a new restoring fertility gene Rf(fa) in rice 水稻恢复育性新基因Rf(fa)的进一步精细定位及候选基因预测
IF 0.9 4区 农林科学
Czech Journal of Genetics and Plant Breeding Pub Date : 2022-10-10 DOI: 10.17221/49/2022-cjgpb
Yu Li, Xiaomi Chen, Tao Lan, Jing Zhang, Ziheng Chen, Wenting Yang, Xinmei Lin
{"title":"Further fine mapping and candidate gene prediction for a new restoring fertility gene Rf(fa) in rice","authors":"Yu Li, Xiaomi Chen, Tao Lan, Jing Zhang, Ziheng Chen, Wenting Yang, Xinmei Lin","doi":"10.17221/49/2022-cjgpb","DOIUrl":"https://doi.org/10.17221/49/2022-cjgpb","url":null,"abstract":"Rf(fa), a new restoring fertility gene in rice, was previously located to a large region on Chromosome 10. The large number of genes within the region made cloning of Rf(fa) difficult. To perform the cloning and further elucidate the molecular mechanism, we reconstructed a mapping segregation population (BC1F1) of 12 000 plants. Using the population and polymorphism of simple sequence repeat (SSR) molecular markers, we finally mapped Rf(fa) between the two SSR molecular markers MM2000 and RM25658, within a 78.87 kb region. By de novo sequencing of a restoring line of CMS-FA hybrid rice, we obtained the genomic sequence of the mapping region, which provided the basis for the prediction of the candidate gene(s) of the target gene and for the comparison of genomic sequence differences between wild and cultivated rice. Within the mapping region, the genomic sequence of the wild rice was significantly different from that of cultivated rice. There were ten genes in the final mapping region. A pentatricopeptide repeat (PPR) protein gene was predicted as the candidate gene of Rf(fa). Our results laid a solid foundation for the final cloning and molecular mechanism analysis of the gene. The identified molecular markers tightly linked to Rf(fa) will facilitate the marker assisted selection in breeding of CMS-FA hybrid rice.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42509691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptome and proteome analysis of the fig (Ficus carica L.) cultivar Orphan and its mutant Hongyan based on the fruit peel colour in South China 基于华南地区无花果品种Orphan及其突变体红艳果皮颜色的转录组和蛋白质组分析
IF 0.9 4区 农林科学
Czech Journal of Genetics and Plant Breeding Pub Date : 2022-10-06 DOI: 10.17221/42/2022-cjgpb
Lingzhu Wei, Jianhui Cheng, J. Xiang, Ting Zheng, Jiang Wu
{"title":"Transcriptome and proteome analysis of the fig (Ficus carica L.) cultivar Orphan and its mutant Hongyan based on the fruit peel colour in South China","authors":"Lingzhu Wei, Jianhui Cheng, J. Xiang, Ting Zheng, Jiang Wu","doi":"10.17221/42/2022-cjgpb","DOIUrl":"https://doi.org/10.17221/42/2022-cjgpb","url":null,"abstract":"The external fruit colour is an important parameter of the fig fruit quality. Fig anthocyanin content is critical for the peel colour. The peel of mature fruits of the fig cultivar Orphan and its red peel bud mutant Hongyan were separated for a transcriptomic and proteomic analysis. A total of 162 different abundance proteins (DAPs) and 5 015  differentially expressed genes (DEGs) were identified. The correlation analysis revealed that only two and 15 genes were downregulated and upregulated, respectively, at both the transcriptome and proteome levels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the enrichment pathways including Tropane, piperidine and pyridine alkaloid biosynthesis, phenylalanine metabolism and isoquinoline alkaloid biosynthesis for DEGs, and protein processing in the endoplasmic reticulum and flavonoid biosynthesis may contribute to the mutant color phenotype. Our results provide transcriptomic and proteomic information for two fig cultivars and may help to clarify the potential mechanisms of fig colouration.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43366905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic variability for resistance to fungal pathogens in bread wheat 面包小麦抗真菌病原体的遗传变异
IF 0.9 4区 农林科学
Czech Journal of Genetics and Plant Breeding Pub Date : 2022-10-06 DOI: 10.17221/55/2022-cjgpb
M. A. R. Arif, E. Arseniuk, A. Börner
{"title":"Genetic variability for resistance to fungal pathogens in bread wheat","authors":"M. A. R. Arif, E. Arseniuk, A. Börner","doi":"10.17221/55/2022-cjgpb","DOIUrl":"https://doi.org/10.17221/55/2022-cjgpb","url":null,"abstract":"Sustainable global wheat production requires wheat varieties, that are sufficiently resistant to the main wheat diseases. The economically important fungal pathogens worldwide include powdery mildew (PM), yellow rust (YR), leaf rust (LR) and blotch causing pathogens including Septoria nodorum blotch (SNB) and Septoria tritici blotch (STB). Here, we present the evaluation of winter wheat varieties of diverse origin against the prevalent local populations of PM, YR, LR, STB and SNB under natural infection conditions through image-based phenotyping in two consecutive years (2019 and 2020). We found several varieties to be resistant against multiple diseases. Following the association mapping, we obtained a total of 206 marker trait associations for all the parameters scored which were condensed to 79 quantitative trait loci (QTLs) (eight QTLs for PM, 25 QTLs for LR, 11 QTLs for YR, 19 QTLs for SNB and eight QTLs for STB) based on the linkage disequilibrium among the molecular markers. The known genes present at these QTLs are discussed in detail. The varieties resistant to multiple diseases, identified with the QTLs and molecular markers can be considered as elite raw material for future wheat breeding.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43251919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Genetic diversity and proteomic analysis of vegetable soybean (Glycine max (L.) Merrill) accessions grown in mineral and BRIS soils 矿物和BRIS土壤中植物大豆(Glycine max(L.)Merrill)材料的遗传多样性和蛋白质组学分析
IF 0.9 4区 农林科学
Czech Journal of Genetics and Plant Breeding Pub Date : 2022-09-12 DOI: 10.17221/38/2022-cjgpb
N. Zakaria, M. Nordin, M. Ibrahim, F. A. Abdul Majid, Z. Zainuddin
{"title":"Genetic diversity and proteomic analysis of vegetable soybean (Glycine max (L.) Merrill) accessions grown in mineral and BRIS soils","authors":"N. Zakaria, M. Nordin, M. Ibrahim, F. A. Abdul Majid, Z. Zainuddin","doi":"10.17221/38/2022-cjgpb","DOIUrl":"https://doi.org/10.17221/38/2022-cjgpb","url":null,"abstract":"Knowledge of the molecular mechanisms of response to environmental stress is fundamental for the development of genetically stress-tolerant crops. This study aims to find vegetable soybean accessions tolerant to cultivation in stressful tropical environments. Fourteen accessions of the vegetable soybean (Glycine max (L.) Merrill) were grown in mineral and beach ridges interspersed with swale (BRIS) soils. The genetic diversity, estimated using inter-simple sequence repeat (ISSR) markers, revealed 42.50% polymorphism and was regarded as moderate. The unweighted pair-group method arithmetic average (UPGMA) analysis allocated the tested accessions into five major clusters at a similarity coefficient level of 0.43. The lowest values of the genetic distance were between IIUMSOY11 and IIUMSOY13 & IIUMSOY13 and IIUMSOY14, indicating that these accessions were more genetically distant from the other accessions. Ten differentially expressed proteins were identified in the three selected accessions IIUMSOY1, IIUMSOY11 and IIUMSOY14 using mass spectrometry, revealing a unique expression of the proteins involved in the storage, flavonoid metabolism, protein modification, oxidative stress defence, carbohydrate metabolism and respiratory chain. The findings may be valuable for the selection of genetically diverse accessions, to enhance the breeding of vegetable soybean genotypes suitable for stressful tropical environments.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44824796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction note to: ISSR markers and morphometry determine genetic diversity and population structure in Hedera helix L. 回注:ISSR标记和形态计量学测定了黑穗藻的遗传多样性和种群结构。
IF 0.9 4区 农林科学
Czech Journal of Genetics and Plant Breeding Pub Date : 2022-09-08 DOI: 10.17221/73/2022-cjgpb
Abdul Shakoor, G. Zaib, Fang-yu Zhao, Wu Li, Xincan Lan, S. Esfandani-Bozchaloyi
{"title":"Retraction note to: ISSR markers and morphometry determine genetic diversity and population structure in Hedera helix L.","authors":"Abdul Shakoor, G. Zaib, Fang-yu Zhao, Wu Li, Xincan Lan, S. Esfandani-Bozchaloyi","doi":"10.17221/73/2022-cjgpb","DOIUrl":"https://doi.org/10.17221/73/2022-cjgpb","url":null,"abstract":"Retraction to: Czech J. Genet. Plant Breed., 58, 2022 (2): 73–82. https://doi.org/10.17221/93/2021-CJGPBThe article was retracted by the authors based on detected errors in the data processing.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42704906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Mendel and progress in 200 years 孟德尔和200年的进步
IF 0.9 4区 农林科学
Czech Journal of Genetics and Plant Breeding Pub Date : 2022-06-13 DOI: 10.17221/21/2022-cjgpb
J. Sekerák
{"title":"Mendel and progress in 200 years","authors":"J. Sekerák","doi":"10.17221/21/2022-cjgpb","DOIUrl":"https://doi.org/10.17221/21/2022-cjgpb","url":null,"abstract":"<jats:p />","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42867762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pea transformation: History, current status and challenges 豌豆转型:历史、现状和挑战
IF 0.9 4区 农林科学
Czech Journal of Genetics and Plant Breeding Pub Date : 2022-06-01 DOI: 10.17221/24/2022-cjgpb
M. Ludvíková, M. Griga
{"title":"Pea transformation: History, current status and challenges","authors":"M. Ludvíková, M. Griga","doi":"10.17221/24/2022-cjgpb","DOIUrl":"https://doi.org/10.17221/24/2022-cjgpb","url":null,"abstract":"This review recapitulates the history, important milestones, the current status, and the perspectives of the pea (Pisum sativum L.) transformation as a tool for pea crop breeding. It summarises the developments of the pea transformation from the first methodological experiments to achieving the complete transformation and regeneration of genetically modified (GM) plants, transformation with the first genes of interest (GOI), to recent techniques of targeted genome editing. We show how recent biotechnological methods and genetic engineering may contribute to pea breeding in order to speed up the breeding process and for the creation of new pea cultivars. The focus is laid on genetic engineering which represents an excellent technology to enhance the pea gene pool with genes of interest which are not naturally present in the pea genome. Different methods of pea transformation are mentioned, as well as various GOI that have been used for pea transformation to date, all aimed at improving transgenic pea traits. Tolerance to herbicides or resistance to viruses, fungal pathogens, and insect pests belong, among others, to the pea traits that have already been modulated by methods of genetic engineering. The production of phytopharmaceuticals is also an important chapter in the use of genetically modified peas. We compare different methods of introducing transgenes to peas and also the usage of different selective and reporter genes. The transformation of other major legumes (soybeans, beans) is marginally mentioned. The effect of genetically modified (GM) peas on animal health (feeding tests, allergenicity) is summarised, the potential risks and benefits of pea modification are evaluated and also the prime expectations of GM peas and the real current state of this technology are compared. Unfortunately, this technology or, more precisely, the products created by this technology are under strict (albeit not scientifically-based) legislative control in the European Union.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41419161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Phenotyping winter wheat for early ground cover 早期地被覆盖冬小麦表型分析
IF 0.9 4区 农林科学
Czech Journal of Genetics and Plant Breeding Pub Date : 2022-04-12 DOI: 10.17221/91/2021-cjgpb
Y. Kaya
{"title":"Phenotyping winter wheat for early ground cover","authors":"Y. Kaya","doi":"10.17221/91/2021-cjgpb","DOIUrl":"https://doi.org/10.17221/91/2021-cjgpb","url":null,"abstract":"The relationship between the early ground cover and the grain yield in winter wheat is not yet fully understood. In a winter wheat breeding programme, selection for early ground cover is traditionally made using visual scoring. Although visual scoring is preferred as a phenotypic screening tool by wheat breeders, its output may not be reliable, as it requires experience. A smartphone camera-based digital image technique can be recommended as a feasible, reliable, repeatable, affordable, and fast selection tool for early ground cover in wheat as an alternative to visual scoring. For this purpose, two wheat trials were conducted in the 2017–2018 and 2019–2020 seasons. In both seasons, 215 wheat genotypes in total, together with three checks from spring wheat, were tested under rain-fed conditions in the spring wheat zone in Turkey. All the tested wheat genotypes were grouped into spring, facultative, and winter growth habit using visual scoring. Simultaneously, photos were taken from each plot with a smartphone camera, and the early ground cover (%) was estimated using the smartphone camera-based digital image technique. The relationships between grain yield, visual scoring, and early ground cover could so be estimated. In both seasons, significant negative correlation between grain yield and visual scoring (r = −0.679** and r = −0.704**, respectively) and significant positive correlation between the grain yield and the early ground cover (r = 0.745** and r = 0.747**, respectively) were observed. The correlation between visual scoring and early ground cover were negative (r = −0.862** and r = −0.926**, respectively). The broad sense heritability estimates in both seasons were 0.51 and 0.85, respectively, for early ground cover, 0.91 and 0.94 for visual scoring, and 0.86 and 0.69 for grain yield. In this study, we revealed that testing winter wheat genotypes in the spring wheat zone rather than in the winter wheat zone could be a more effective way to unveil the positive relationship between the early ground cover and the grain yield. We have shown that the smartphone-based digital image technique is a useful selection tool for early ground cover in winter wheat.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42706480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in wheat breeding for resistance to Fusarium head blight 小麦抗枯萎病育种研究进展
IF 0.9 4区 农林科学
Czech Journal of Genetics and Plant Breeding Pub Date : 2022-04-06 DOI: 10.17221/1/2022-cjgpb
K. T. Mawcha, N. Zhang, Yanan Wang, Wenxiang Yang
{"title":"Advances in wheat breeding for resistance to Fusarium head blight","authors":"K. T. Mawcha, N. Zhang, Yanan Wang, Wenxiang Yang","doi":"10.17221/1/2022-cjgpb","DOIUrl":"https://doi.org/10.17221/1/2022-cjgpb","url":null,"abstract":"Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most devastating diseases of wheat globally. FHB causes an extensive reduction in yield and reduces the grain quality through its contamination with Fusarium toxins such as deoxynivalenol (DON), T2 toxin, HT-2 toxin, nivalenol, and zearalenone. This review provides an overview of updated progress of genetic studies on the resistance to FHB, with an emphasis on the sources of resistance to FHB, resistance gene/quantitative trait loci (QTL) mining, resistance gene cloning, major FHB resistance genes/QTL identification by molecular markers, and resistance mechanisms. The achievements of resistance breeding based on phenotype selection and molecular markers was also summarised. Based on the systematic analysis of breeding limitations and utilisation of FHB resistant materials, the authors put forward three suggestions: First, to toughen the resistance identification of wheat, testing traits such as Fusarium damaged kernel and DON need special attention as visual symptoms are less reliable, resistant varieties should be popularised, and the screening the resistant genes should be strengthened; The second is to use the additive effect of quantitative resistance genes accumulated from existing varieties to reduce the cost of resistance in order to create high yielding resistant varieties. Thirdly, to enhance research and utilization of new genes.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42047526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Genetic variability for aluminium tolerance in sunflower (Helianthus annuus L.) 向日葵耐铝性的遗传变异
IF 0.9 4区 农林科学
Czech Journal of Genetics and Plant Breeding Pub Date : 2022-04-06 DOI: 10.17221/110/2021-cjgpb
Vivek K. Singh, S. Chander, R. K. Sheoran, Anu, O. P. Sheoran, A. Garcia-Oliveira
{"title":"Genetic variability for aluminium tolerance in sunflower (Helianthus annuus L.)","authors":"Vivek K. Singh, S. Chander, R. K. Sheoran, Anu, O. P. Sheoran, A. Garcia-Oliveira","doi":"10.17221/110/2021-cjgpb","DOIUrl":"https://doi.org/10.17221/110/2021-cjgpb","url":null,"abstract":"Breeding for aluminium (Al) tolerance is a vital approach for enhancing the productivity of field crops in acidic soil regions where Al toxicity seems to be the most restraining factor for crop performance. Sunflower is generally considered extremely sensitive to Al toxicity; although no comprehensive information on the evaluation of sunflower genotypes for Al tolerance is available. In this study, 50 sunflower genotypes (set-I and set-II) were evaluated for Al tolerance at the seedling stage under hydroponic conditions. Substantial genetic variability in Al tolerance was observed among the studied genotypes. High estimates of heritability were obtained for both the total root length (TRL) and root regrowth (RRG), together with high estimates of genetic advance. A cluster analysis separated the genotypes into five different groups among the studied germplasm, the genotypes; NDLR-06 and EC-601861 were observed to be highly Al tolerant in terms of root regrowth under Al stress. In conclusion, the findings lreveal the complex mechanisms of Al tolerance in sunflower and may help to find new genetic resource for the improvement of Al tolerance in sunflower breeding.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47446556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信