Journal of Electroanalytical Chemistry最新文献

筛选
英文 中文
Effects of Ni-flash coating on hydrogen evolution, ad/absorption, and permeation behaviors of advanced high-strength steel during electro-Zn plating 镍闪蒸涂层对高级高强钢电镀锌过程中析氢、吸氢和渗透行为的影响
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117653
Hye Rin Bang, Jin Sung Park, Sung Jin Kim
{"title":"Effects of Ni-flash coating on hydrogen evolution, ad/absorption, and permeation behaviors of advanced high-strength steel during electro-Zn plating","authors":"Hye Rin Bang,&nbsp;Jin Sung Park,&nbsp;Sung Jin Kim","doi":"10.1016/j.jelechem.2023.117653","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117653","url":null,"abstract":"<div><p>The effects of a thin Ni-flash coating, tens of nanometers thick, on hydrogen evolution, ad/absorption, and permeation of advanced high-strength steel were examined for a deeper understanding of the hydrogen infusion behavior in the steel substrate during electro-Zn plating. The electrochemical permeation technique and impedance spectroscopy were used under cathodic polarization in a step-up manner. In addition to the electrochemical analyses, the hydrogen microprinting technique was employed to identify the distribution of Ag particles (locating hydrogen atoms) in the electro-Zn plated steels with and without a thin intermediate Ni-layer. The results revealed that despite the higher hydrogen evolution rate on Ni-flash coating layer than on bare steel, the intermediate Ni-layer decreased the hydrogen infusion considerably in the steel substrate during electro-Zn plating, due primarily to the lower hydrogen ad/absorption rate on the Ni-flash coating layer, and the predominant hydrogen trapping at the multi-interfacial areas of the Zn-layer/Ni-layer/steel substrate. These results could provide insights into the precise role of a thin (tens of nanometers) Ni-flash coating on the resistance to hydrogen embrittlement of ultra-high-strength steel alloys during electro-Zn plating.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117653"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1624713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of ammonium citrate on CoP/CC morphology and its electrocatalytic hydrogen evolution performance 柠檬酸铵对CoP/CC形貌及电催化析氢性能的影响
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117632
Yinchen Dai , Jibiao Guan , Xiao Li , Baochun Guo , Lina Wang , Ming Zhang
{"title":"The effect of ammonium citrate on CoP/CC morphology and its electrocatalytic hydrogen evolution performance","authors":"Yinchen Dai ,&nbsp;Jibiao Guan ,&nbsp;Xiao Li ,&nbsp;Baochun Guo ,&nbsp;Lina Wang ,&nbsp;Ming Zhang","doi":"10.1016/j.jelechem.2023.117632","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117632","url":null,"abstract":"<div><p>The development and improvement of new transition metal-based catalysts to replace Pt/C electrodes in electrolytic water hydrogen evolution has attracted much attention.<!--> <span>In this work, we used ammonium citrate as additive, mixed with cobalt nitrate, through hydrothermal and phosphating methods to get supported on carbon cloth catalyst with new morphology (referred to as E380-CoP/CC, E380 stands for ammonium citrate). Benefit from the dense and fine nanosheet structure,</span> <!-->compared with cobalt phosphating alone, the catalyst E380-CoP/CC has a significant improvement in hydrogen evolution performance. In 1 M KOH, the overpotential is 57 mV at the current density of 10 mA cm<sup>−2</sup>, and the Tafel slope is only 40 mV dec<sup>-1</sup><span>, which is very close to the hydrogen evolution performance of Pt/C electrode. In addition, the catalyst has favorable stability and superior hydrogen evolution performance after undergoing CV 2000 cycles and 48 h i-</span><em>t</em> test. This work offers a reliable idea for realizing electrolytic water hydrogen evolution technology with high efficiency and energy saving.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117632"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3082220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of oxalic additive on etidronic acid anodizing of aluminum alloy 草酸添加剂对铝合金依地膦酸阳极氧化的影响
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117641
Manxi Sun , Hongjian Huang , Meilin Jiang , Li Cheng , Lin Dong
{"title":"Influence of oxalic additive on etidronic acid anodizing of aluminum alloy","authors":"Manxi Sun ,&nbsp;Hongjian Huang ,&nbsp;Meilin Jiang ,&nbsp;Li Cheng ,&nbsp;Lin Dong","doi":"10.1016/j.jelechem.2023.117641","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117641","url":null,"abstract":"<div><p>The anodizing in etidronic acid (HEDP) and oxalic acid (H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>) mixed electrolytes was conducted. The anodizing parameters were optimized based on the evaluation of energy consumption, growth efficiency, and hardness of PAA film. The results indicate that continuous and uniform PAA films can be fabricated in HEDP/H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> solutions in any proportion, and both the anodizing voltages and roughnesses of PAA films decreased with the H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> content. The moderate amount of H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> could lead to an increase in the formation efficiency of PAA films. The hardness of the PAA film prepared in HEDP/H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> electrolyte could reach up to ∼660 HV. Moreover, a surface resembling lotus leaves could be formed due to the corrosion of PAA films with sub-micron interpore distance by H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> during anodizing, and a superhydrophobic surface with a contact angle of ∼153° could be obtained after it was modified via stearic acid.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117641"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3082218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co nanoparticles embedded into leaf-like porous carbon as a promising cathode catalyst for Li-O2 batteries 钴纳米颗粒嵌入叶状多孔碳中作为锂氧电池极具前景的阴极催化剂
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117663
Chaoyang Sun , Fenglong Xiao , Di Wu , Gang Lian , Deliang Cui , Qilong Wang , Haohai Yu
{"title":"Co nanoparticles embedded into leaf-like porous carbon as a promising cathode catalyst for Li-O2 batteries","authors":"Chaoyang Sun ,&nbsp;Fenglong Xiao ,&nbsp;Di Wu ,&nbsp;Gang Lian ,&nbsp;Deliang Cui ,&nbsp;Qilong Wang ,&nbsp;Haohai Yu","doi":"10.1016/j.jelechem.2023.117663","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117663","url":null,"abstract":"<div><p>Rechargeable Li-O<sub>2</sub> batteries show great potential due to their superior high energy density. However, the practical application is still limited by the sluggish kinetics, resulting in poor cycling performance and high overpotentials. Herein, highly dispersed Co nanoparticles embedded into porous <em>N</em>-doped carbon matrix (DCo-NC) with carbon nanotubes is explored through the pyrolysis of a bimetallic leaf-shaped ZnCo-ZIFs. The evaporation of Zn species and porous carbon matrix derived from ZIFs prevents the Co nanoparticles aggregation, exposes more Co-N active sites and provides abundant pores. They facilitate Li<sup>+</sup> and electron transfer, prevent Co nanoparticles from deactivation and provide enough space for Li<sub>2</sub>O<sub>2</sub>, thereby accelerating oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) kinetics. Accordingly, the Li-O<sub>2</sub> batteries with DCo-NC cathode exhibit reduced overpotential, high discharge capacity (10,490 mA h g<sup>−1</sup> at 100 mA g<sup>−1</sup> current density) and improved cycling performance (258 cycles at 500 mA g<sup>−1</sup> with a limited capacity of 500 mA h g<sup>−1</sup>, 103 cycles at 500 mA g<sup>−1</sup> with a limited capacity of 1000 mA h g<sup>−1</sup>).</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117663"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3206591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced electrocatalytic performance of CuxNi1-xS Nanoflakes for overall water splitting CuxNi1-xS纳米片电催化性能增强
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117648
Nandini Trivedi , Mohammad Balal , Vikas Patel , Sudipta R. Barman , C.K. Sumesh , Pratik M. Pataniya
{"title":"Enhanced electrocatalytic performance of CuxNi1-xS Nanoflakes for overall water splitting","authors":"Nandini Trivedi ,&nbsp;Mohammad Balal ,&nbsp;Vikas Patel ,&nbsp;Sudipta R. Barman ,&nbsp;C.K. Sumesh ,&nbsp;Pratik M. Pataniya","doi":"10.1016/j.jelechem.2023.117648","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117648","url":null,"abstract":"<div><p>For long-term energy storage and conversion, the design of commercial and high-performance catalysts for bifunctional electrocatalytic water splitting is critical. We report the efficient method to prepare Cu<sub>x</sub>Ni<sub>1-x</sub>S Nanoflakes (NFs) on binder-free and large area plastic chip electrodes. Cu<sub>x</sub>Ni<sub>1-x</sub>S NSs show superior overall water splitting with optimized Cu-amount. The synthesized catalysts perform well in 1.0 M KOH alkaline media for simultaneous hydrogen and oxygen evolution, with relatively low overpotential, efficient kinetics, and sustained electrolysis durability. Impressively, it is found that Cu-doping enhances the chemical and environmental stability, beneficial for the practical application. By modifying the electronic structure, Cu-atom doping promotes the easy flow of electrons, which leads to incredible rise in the electrocatalytic activity with over potential of 152 mV for HER and 189 mV for OER on Cu<sub>x</sub>Ni<sub>1-x</sub>S. Bi-functional water splitting cell generates 10 mA/cm<sup>2</sup> current density at cell voltage of 1.74 V. Encouragingly, current density of 80 mA/cm<sup>2</sup> can be generated at potential of 2.61 V with optimized chemical composition of Cu<sub>x</sub>Ni<sub>1-x</sub>S based electrodes. Cu<sub>x</sub>Ni<sub>1-x</sub>S demonstrates excellent stability for bi-functional water electrolysis at 20 mA/cm<sup>2</sup> for more than 18 h. This research lays forth a viable technique for developing enhanced bi-functional electrocatalysts that can be used to substitute noble metals in a range of renewable energy applications.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117648"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3396787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Comparing the electrochemical degradation of levofloxacin using the modified Ti/SnO2 electrode in different electrolytes 比较了改性钛/SnO2电极在不同电解液中对左氧氟沙星的电化学降解
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117633
Jing Meng , Cong Geng , Yang Wu , Yinyan Guan , Weichun Gao , Wei Jiang , Jiyan Liang , Shiyue Liu , Xueying Wang
{"title":"Comparing the electrochemical degradation of levofloxacin using the modified Ti/SnO2 electrode in different electrolytes","authors":"Jing Meng ,&nbsp;Cong Geng ,&nbsp;Yang Wu ,&nbsp;Yinyan Guan ,&nbsp;Weichun Gao ,&nbsp;Wei Jiang ,&nbsp;Jiyan Liang ,&nbsp;Shiyue Liu ,&nbsp;Xueying Wang","doi":"10.1016/j.jelechem.2023.117633","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117633","url":null,"abstract":"<div><p>The purpose of this study is to develop an electrode material with high electrocatalytic activity, good stability and low price for the degradation of the new pollutant - antibiotic levofloxacin (LEV). A novel modified Ti/SnO<sub>2</sub> electrode is prepared using a sol–gel method combined with spraying. The morphology of the Ti/SnO<sub>2</sub>-Sb-Ni/SiO<sub>2</sub> electrode was performed by field emission scanning electron microscopy, which revealed a smooth and flat surface. It can be seen from the results of X-ray diffraction and electrochemical tests, the electrode possessed finer grain size (2.68 nm) and slightly higher oxygen evolution potential (OEP, 1.87 V). Electrochemical degradation experiments show that the removal rate of LEV in Na<sub>2</sub>SO<sub>4</sub> and NaNO<sub>3</sub> solutions reached 100% after 10 min reaction, while in NaCl solution the reaction time (LEV 100% removal) was shortened to 3 min, indicating a faster removal rate. An electrical energy consumption per order of magnitude (EE/O) of LEV degraded by Ti/SnO<sub>2</sub>-Sb-Ni/SiO<sub>2</sub> electrode was only 0.59 kWh m<sup>−3</sup> for an initial concentration of 20 mg/L LEV with a volume of 400 mL. According to the changes of UV–visible absorption spectra during the LEV degradation, the damage degree of conjugated structures in LEV molecules varies with different electrolytes. The existence of hydroxyl radical (•OH) and sulfate radical (SO<sub>4</sub><sup>•−</sup>) was confirmed by radical quenching experiment and EPR text with 100 mM 5,5-Dimethyl-1-pyrrolidine <em>N</em>-oxide (DMPO). In different electrolytes, SO<sub>4</sub><sup>•−</sup> (in Na<sub>2</sub>SO<sub>4</sub> solution), •OH (in NaNO<sub>3</sub> solution) and active chlorine(in NaCl solution) played a leading role in LEV degradation, respectively.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117633"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1624709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porous cerium-zeolite bifunctional ORR/OER electrocatalysts in alkaline media 碱性介质中多孔铈-沸石双功能ORR/OER电催化剂
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117668
Jadranka Milikić , Srna Stojanović , Ljiljana Damjanović-Vasilić , Rastko Vasilić , Lazar Rakočević , Slavica Lazarević , Biljana Šljukić
{"title":"Porous cerium-zeolite bifunctional ORR/OER electrocatalysts in alkaline media","authors":"Jadranka Milikić ,&nbsp;Srna Stojanović ,&nbsp;Ljiljana Damjanović-Vasilić ,&nbsp;Rastko Vasilić ,&nbsp;Lazar Rakočević ,&nbsp;Slavica Lazarević ,&nbsp;Biljana Šljukić","doi":"10.1016/j.jelechem.2023.117668","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117668","url":null,"abstract":"<div><p>Zeolite ZSM-5 and zeolite β were modified by aqueous ion exchange with cerium and then calcined (cal) to obtain Ce-ZSM-5, Ce-ZSM-5 cal, Ce-β, and Ce-β cal electrocatalysts. X-ray powder diffraction analysis, Fourier Ttransform infrared spectroscopy, scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, fluorescence spectroscopy, and Brunauer-Emmett-Teller method revealed changes in the structure and porosity of zeolites upon calcination. Voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were used for testing four zeolites for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in alkaline media. OER starts the earliest at Ce-β cal with onset overpotential 50, 70, and 110 mV lower than Ce-ZSM-5 cal, Ce-ZSM-5, and Ce-β. Ce-β cal further showed the lowest OER Tafel slope (114 mV dec<sup>−1</sup>). Consequently, the highest OER current density was recorded in the case of Ce-β cal, followed by Ce-β, Ce-ZSM-5 cal, and Ce-ZSM-5. Regarding ORR, Ce-ZSM-5 cal showed the lowest Tafel slope (70 mV dec<sup>−1</sup>) with the highest current densities that remained constant during the chronoamperometry test with a negligible decrease of 4%. It could be concluded that calcined forms exhibit better performance for OER and OER than their parent, non-calcined forms due to more active sites available for OER/ORR and decreased charge-transfer resistance.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117668"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1703289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation of capacitive deionization (CDI) with divergent and convergent channels 具有发散和收敛通道的电容去离子(CDI)的数值研究
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117642
Hooman Hadidi , Jafar Jamaati , Javad Ahmadi , Johan Nordstrand
{"title":"Numerical investigation of capacitive deionization (CDI) with divergent and convergent channels","authors":"Hooman Hadidi ,&nbsp;Jafar Jamaati ,&nbsp;Javad Ahmadi ,&nbsp;Johan Nordstrand","doi":"10.1016/j.jelechem.2023.117642","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117642","url":null,"abstract":"<div><p>This research aims to explore the impact of tilted channel configurations of CDI cells on desalination performance. The results reveal that the titled convergent channels have a faster average salt adsorption rate (ASAR) than the regular straight geometry. For desalination operations that end at a quarter of the equilibrium salt adsorption capacity (SAC), the convergent spacer with a slight slope of 1.5 degrees has a 20 % higher ASAR than the typical straight geometry (0.15 mg/g/min for convergent and 0.12 mg/g/min for straight). This gain increases to about 24, 29.5, and 33%, respectively, for slopes of 3.5, 5.5, and 7 degrees, compared to the straight geometry with the same spacer thickness. By looking at the underlying mechanisms, the spacer geometry is found to shift the location of the initial adsorption. This affects how quickly the device outputs the cleaned water. Interestingly, the geometry angle can also affect the location of the depletion zone, so tilted spacers can also affect the behavior during electrode starvation. Specifically, the convergent geometry has the depletion zone in the middle of the electrode instead of the corner near the outlet, as seen for straight and divergent channels. Together, these findings indicate how to construct tilted spacers to enhance CDI performance.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117642"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2635566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of porous structure and MnO2 modification for improving capacitance of planar BDD electrode 多孔结构与MnO2改性相结合提高平面BDD电极电容
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117647
Debing Li , Jinyuan Li , Xiang Yu, Haipei Xu, Yuanyuan Li
{"title":"Combination of porous structure and MnO2 modification for improving capacitance of planar BDD electrode","authors":"Debing Li ,&nbsp;Jinyuan Li ,&nbsp;Xiang Yu,&nbsp;Haipei Xu,&nbsp;Yuanyuan Li","doi":"10.1016/j.jelechem.2023.117647","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117647","url":null,"abstract":"<div><p>Wearable electronic devices have become a preferred choice for health monitoring, but suffer from low capacitance of planar electrodes. This work aims to improve the capacitive performance through the combination of porous boron-doped diamond (BDD) and MnO<sub>2</sub><span> modification. BDD film was deposited on the substrate of titanium foam using hot-filament chemical vapor deposition (HFCVD). Constant-voltage deposition was then employed to deposit MnO</span><sub>2</sub> on the BDD, and the deposition time was adjusted to evaluate the influence of MnO<sub>2</sub> modification on the electrode capacitance. Porous structure formed by titanium foam enables BDD electrode to exhibit larger specific surface area, and reach a capacitance of 67.9 mF/cm<sup>2</sup>. Porous BDD/MnO<sub>2</sub> film (MnO<sub>2</sub> deposited for 1500 s) shows pea-like morphology and has optimal capacitive performance. BDD/MnO<sub>2</sub>-1500 s electrode displays a maximum capacitance of 1383.6 mF/cm<sup>2</sup> at a current density of 2 mA/cm<sup>2</sup>, which is about 195 times that of the planar BDD electrode (7.1 mF/cm<sup>2</sup> at a current density of 2 mA/cm<sup>2</sup>) along with a minimum R<sub>ct</sub> value of 2 Ω. This allows us to see the fact that improvement mechanism of combining porous structure and MnO<sub>2</sub> modification may result from common effect of three following aspects: (1) Porous structure gives BDD superior specific surface area and favorable ion transport channels than planar electrode; (2) Pseudocapacitance effect of MnO<sub>2</sub> increases the capacitance density; (3) Pea structure of MnO<sub>2</sub> may markedly increase the specific surface area of the film and shorten ion/electronic diffusion distances.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117647"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3082222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable synthesis of diazocine - investigation on electroreduction mechanism for intramolecular cyclization of 2,2′- dinitrodibenzyl in the presence of CO2 重氮嘧啶的可控合成——CO2存在下2,2′-二硝基二苄基分子内环化的电还原机理研究
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117644
Yan Liu , Feng Li , Dan Li , Wenhui Dong , Baokang Jin
{"title":"Controllable synthesis of diazocine - investigation on electroreduction mechanism for intramolecular cyclization of 2,2′- dinitrodibenzyl in the presence of CO2","authors":"Yan Liu ,&nbsp;Feng Li ,&nbsp;Dan Li ,&nbsp;Wenhui Dong ,&nbsp;Baokang Jin","doi":"10.1016/j.jelechem.2023.117644","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117644","url":null,"abstract":"<div><p>11,12-dihydrodibenzo[c,g][1,2]diazocine (Diazocine, 12), a molecular switch capable of reversible interconversion between (at least) two states by light, has been widely used in pharmacology and biochemistry. However, most of the synthetic methods so far have been limited by tedious steps, complicated derivatives, and long reaction times, resulting in poor synthetic yields of 12. Here, we propose a green, effective, and controllable strategy for synthesizing 12. The intramolecular cyclization (8-membered ring) of 2,2′-dinitrodibenzyl (1) was achieved by electrochemical reduction in the presence of CO<sub>2</sub>, and 12 and its derivatives 11,12-dihydrodibenzo[c,g][1,2]diazocine-<em>N</em>-oxide (DDCG-N, 11) were synthesized. The electrochemical reduction mechanism of 1 in the presence of CO<sub>2</sub> was investigated by cyclic voltammetry (CV) and in situ FT-IR spectroelectrochemistry. The molecular structures of the electrolytic product (12) and intermediate (11) were confirmed by single-crystal X-ray diffraction, NMR, and MS. The results show that the electrochemical behavior of 1 in acetonitrile (AN) changes from a reversible two-step 1-electron transfer process (in the absence of CO<sub>2</sub>) to an irreversible 8-electron transfer process (in the presence of CO<sub>2</sub>). The 12 and 11 can be obtained by controlling the electrolytic potential and time. Under the optimum conditions, the yields of 12 and 11 were 84% and 71%, respectively.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117644"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1702465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信