Journal of Electroanalytical Chemistry最新文献

筛选
英文 中文
Vanadium-based compounds for aqueous zinc ion batteries with excellent rate capability and cyclic stability 用于锌离子电池的钒基化合物具有优异的倍率性能和循环稳定性
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117636
Lei Zhao , Yongtao Tan , Yitong Sun , Haorui Liu , Nana Yang , Ning Mi
{"title":"Vanadium-based compounds for aqueous zinc ion batteries with excellent rate capability and cyclic stability","authors":"Lei Zhao ,&nbsp;Yongtao Tan ,&nbsp;Yitong Sun ,&nbsp;Haorui Liu ,&nbsp;Nana Yang ,&nbsp;Ning Mi","doi":"10.1016/j.jelechem.2023.117636","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117636","url":null,"abstract":"<div><p><span>Zinc ion battery (ZIB) is becoming a research hotspot because of its high safety, low cost and environmental protection, and will become a promising new energy storage device. Vanadium-based compounds are widely investigated as positive materials because of their multivalency, rich crystal structure and high specific capacity. In this work, three vanadium-based compounds V</span><sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>3</sub> and VN samples are prepared by hydrothermal and solid-phase synthesis methods. The phase structure and purity of synthetic materials are demonstrated X-ray Diffraction (XRD). Morphology characterization shows that V<sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>3</sub><span> and VN samples have nanosheets<span>, nanoflakes<span> and nanoparticles structures, respectively. In addition, the electrochemical properties of V</span></span></span><sub>2</sub>O<sub>5</sub>, V<sub>2</sub>O<sub>3</sub><span> and VN samples in ZIBs are systematically investigation. These three vanadium-based compounds all have great cycle stability and high-rate capabilities. This work provides guidance for the development of novel vanadium-based electrode materials and paves the way for the development of zinc ion storage.</span></p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117636"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3396789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential and anion effects on the adsorption of 3′,4′-bis(hexylthio)-2,2′:5′,2′'-terthiophene on Au(1 1 1) electrode characterized by in situ STM 电位和阴离子对3′,4′-双(己基硫)-2,2′:5′,2′-噻吩在Au(11 11)电极上吸附的影响
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117646
Yu-Chun Hsiao , Arulmozhi Velusamy , Shakil N. Afraj , Jia-Hao Liu , Cheng-Liang Liu , Ming-Chou Chen , Hsien-Ming Kao , Shuehlin Yau
{"title":"Potential and anion effects on the adsorption of 3′,4′-bis(hexylthio)-2,2′:5′,2′'-terthiophene on Au(1 1 1) electrode characterized by in situ STM","authors":"Yu-Chun Hsiao ,&nbsp;Arulmozhi Velusamy ,&nbsp;Shakil N. Afraj ,&nbsp;Jia-Hao Liu ,&nbsp;Cheng-Liang Liu ,&nbsp;Ming-Chou Chen ,&nbsp;Hsien-Ming Kao ,&nbsp;Shuehlin Yau","doi":"10.1016/j.jelechem.2023.117646","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117646","url":null,"abstract":"<div><p>The adsorption of organic molecules on gold electrodes serves as a model to understand the organic/inorganic electrified interface, which is relevant to the study of molecular electronics and organic thin film semiconductors. Our previous study on terthiophene (TT) adsorption on an Au(1<!--> <!-->1<!--> <!-->1) electrode shows that immersing Au(1<!--> <!-->1<!--> <!-->1) crystals in a TT ethanol dosing solution installs an ordered TT adlayer on the sample. The current study addresses the adsorption of 3′,4′-bis(hexylthio)-2,2′:5′,2′'-terthiophene (DTDST), a molecule with a TT backbone attached with two thiolhexyl chains, on an ordered Au(1<!--> <!-->1<!--> <!-->1) electrode. High-quality STM images were obtained to reveal the internal and 2D spatial structures of DTDST admolecules. The potential greatly influenced the organization of DTDST on the ordered Au(1<!--> <!-->1<!--> <!-->1) electrode. Although the pristine DTDST adlayer was disordered, it transformed into ordered Au(1<!--> <!-->1<!--> <!-->1) - (3√3 × 9) and (5√3 × 26) structures after applying a potential more negative than 0 V (vs. Ag/AgCl) in 0.1 M H<sub>2</sub>SO<sub>4</sub> and HClO<sub>4</sub>, respectively. Shifting the potential more positive than 0.25 V resulted in coadsorption of bisulfate anions and restructuring of the DTDST adlayer. High-quality molecular resolution STM images were collected to reveal the azimuthal orientation of the DTDST admolecule on the Au(1<!--> <!-->1<!--> <!-->1) electrode. The thiolhexyl chains of DTDST admolecules could arrange in such a way that allowed intermolecular van der Waals interactions. Oxidation of adsorbed DTDST molecules to yield oligomers was also revealed by <em>in situ</em> STM.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117646"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1702461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrostatic modification of expanded graphite cathode for high-performance aluminum-ion batteries 高性能铝离子电池用膨胀石墨阴极的静电改性研究
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117761
Changsheng An , Xiaobo Ma , Jiajie Wu , Jianmei Li , Jinfeng Li , Shiying Zhang , Shumin Zhang , Chao Cai
{"title":"Electrostatic modification of expanded graphite cathode for high-performance aluminum-ion batteries","authors":"Changsheng An ,&nbsp;Xiaobo Ma ,&nbsp;Jiajie Wu ,&nbsp;Jianmei Li ,&nbsp;Jinfeng Li ,&nbsp;Shiying Zhang ,&nbsp;Shumin Zhang ,&nbsp;Chao Cai","doi":"10.1016/j.jelechem.2023.117761","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117761","url":null,"abstract":"<div><p>Graphite and its derivatives, as cathode materials for aluminum-ion batteries (AIBs), have excellent cyclic properties, so they have garnered significant research interest over the years. Preliminary research has demonstrated that expanded graphite (EG) exhibits a dual aluminum storage mechanism, i.e., intercalation (1.5–2.5 V) and adsorption (0.5–2.5 V). In this study, for the adsorption mechanism, we propose positively charged EG as a cathode material for AIBs. Using electrostatic modification methods, we found that positive charge on the surface of EG can depress the surface barrier and lead to the adsorption of more anions through electrostatic forces during chemical reactions. Moreover, the improvement of adsorption capacity could play a synergistic coupling role to improve the intercalation kinetics of anions, in which has a high reversible capacity and excellent rate cycling property. Thus, positively charged EG with a large layer space (0.41 nm) demonstrates a high reversible capacity of 118.3 mAh/g at a current density of 1 A/g, along with a conspicuous rate performance of 74.8 mAh/g at 15 A/g. Additionally, as-prepared EG hybrids indicate superb cyclic stability with a retained capacity of 101.8 mAh/g over 10,000 cycles at 5 A/g. The electrostatic modification strategy and expansion of the layer space could facilitate the development of high property graphite cathode materials for AIBs.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"947 ","pages":"Article 117761"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3212828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical formation of Sn films on copper by overpotential and underpotential electrodeposition in deep eutectic solvents 深共晶溶剂中过电位和欠电位电沉积在铜上形成锡膜的电化学研究
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117637
L.A. Azpeitia , C.A. Gervasi , A.E. Bolzán
{"title":"Electrochemical formation of Sn films on copper by overpotential and underpotential electrodeposition in deep eutectic solvents","authors":"L.A. Azpeitia ,&nbsp;C.A. Gervasi ,&nbsp;A.E. Bolzán","doi":"10.1016/j.jelechem.2023.117637","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117637","url":null,"abstract":"<div><p>The electrodeposition process of tin films on copper electrodes in ethaline and reline deep eutectic solvents (DES) was studied in the 303 – 353 K range. Voltammetric data indicate the presence of underpotential and overpotential electrodeposition processes. While the former occurs under surface-reaction control, the latter proceeds under mass transport control. Electrochemical impedance spectroscopy shows two capacitive contributions during the underpotential process and a single capacitive contribution at high frequencies and a Warburg contribution at low frequencies, when the electrodeposition process takes place in the overpotential region. Tin deposits obtained in ethaline exhibit blunt particles with ordered structures whereas in reline facetted particles with no preferential order are observed as electrodeposition time is increased. The electrocrystallization mechanism under overpotential conditions in ethaline and reline corresponds to an instantaneous nucleation and a 3D growth process. For underpotential conditions in ethaline, an instantaneous nucleation and 2D growth coupled to an adsorption process occurs. XRD spectra shows the formation of Cu<sub>3</sub>Sn and Cu<sub>6</sub>Sn<sub>5</sub> intermetallics due to the diffusion of Sn atoms into the Cu lattice during the electrodeposition process. From rotating disk electrode measurements, the diffusion coefficient of Sn(II) ions in both DES at different temperatures, and the diffusion activation energy, were determined.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117637"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2635568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical ratiometry: A new route towards bioaffinity-based in vitro diagnostics 电化学比率法:基于生物亲和度的体外诊断新途径
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117667
Jin Song , Ghulam Abbas , Ashaq Ali , Yaohong Ma , Yiwei Li
{"title":"Electrochemical ratiometry: A new route towards bioaffinity-based in vitro diagnostics","authors":"Jin Song ,&nbsp;Ghulam Abbas ,&nbsp;Ashaq Ali ,&nbsp;Yaohong Ma ,&nbsp;Yiwei Li","doi":"10.1016/j.jelechem.2023.117667","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117667","url":null,"abstract":"<div><p><em>In vitro</em><span><span> diagnostics (IVD) is aimed at ensuring human welfare and life security. Electrochemical sensors have been utilized in different applications, such as </span>environmental contaminant<span> detection and food safety, especially in the field of IVD, due to their excellent properties such as high sensitivity, simple to use, and cost-effectiveness. However, reluctant reproducibility and accuracy are among the most insurmountable hindrances for electrochemical IVD sensors, especially bioaffinity-based ones essential in disease biomarker detection and infection prognoses. In recent years, inspired by the ratiometric strategy from fluorometry, electrochemically ratiometric biosensors have been increasingly developing. This review highlights recent advances in bioaffinity based electrochemically ratiometric sensors (BERS) for IVD applications. Their signal generation strategies and analysis applications, especially for potential applications in the real world, are introduced. Finally, we enlighted several thoughts and insights into the design and application of BERS in IVD and provided the challenges and perspectives in this domain.</span></span></p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117667"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1624715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sensor based on NiO/Fe2O3 modified GCE electrode for the detection of nitrite 一种基于NiO/Fe2O3修饰GCE电极的亚硝酸盐检测传感器
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117672
Xu Chun Song , Yi Fan Zheng , Ling Wang
{"title":"A sensor based on NiO/Fe2O3 modified GCE electrode for the detection of nitrite","authors":"Xu Chun Song ,&nbsp;Yi Fan Zheng ,&nbsp;Ling Wang","doi":"10.1016/j.jelechem.2023.117672","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117672","url":null,"abstract":"<div><p>NiO/Fe<sub>2</sub>O<sub>3</sub> modified glass carbon (GCE) electrode was prepared by electrodeposition of NiO nanoparticles on Fe<sub>2</sub>O<sub>3</sub>/GCE. The electrochemical characteristics of NiO/Fe<sub>2</sub>O<sub>3</sub>/GCE have been examined using cyclic voltammetry. The enhanced electrocatalytic activity of NiO/Fe<sub>2</sub>O<sub>3</sub>/GCE modified electrode for nitrite oxidation may be related to the synergistic effect of NiO and Fe<sub>2</sub>O<sub>3</sub> nanoparticles, which may not only modify the electronic structure of the composite materials but also favor the increase of active sites in NiO/Fe2O3 and help to adsorb more active materials. To detect nitrite, the NiO/Fe<sub>2</sub>O<sub>3</sub>/GCE modified electrode was employed as an electrochemical sensor. There is a strong linear correlation between concentration and peak current (R = 0.9993) in the 5–500 μM range, and a detection limit of 0.05 μM (S/N = 3) was established. NiO/Fe<sub>2</sub>O<sub>3</sub> sensors have excellent selectivity and stability as well. The sensor performs well analytically in determining nitrite in tap water, indicating that it has the possibility for efficient application in nitrite detection. This simple, low-cost, stable and highly sensitive nitrite electrochemical sensor provides a promising method for the detection of nitrite in practical samples.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117672"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1703291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Temperature effects on the electrodeposition of semiconductors from a weakly coordinating solvent 温度对弱配位溶剂半导体电沉积的影响
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117638
Alexander W. Black , Wenjian Zhang , Yasir J. Noori , Gillian Reid , Philip N. Bartlett
{"title":"Temperature effects on the electrodeposition of semiconductors from a weakly coordinating solvent","authors":"Alexander W. Black ,&nbsp;Wenjian Zhang ,&nbsp;Yasir J. Noori ,&nbsp;Gillian Reid ,&nbsp;Philip N. Bartlett","doi":"10.1016/j.jelechem.2023.117638","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117638","url":null,"abstract":"<div><p>Temperature is an important variable in electrochemistry, increasing the operating temperature has the capacity to provide significant increases in mass transport and electron transfer rates. In the case of electrodeposition, it can also allow the deposition of crystalline material which would otherwise be amorphous when grown at lower temperatures. In this work we exploit a high boiling point, weakly coordinating solvent, o-dichlorobenzene, to electrodeposit the p-block semiconductors antimony and antimony telluride at temperatures up to 140 °C. The effect of the temperature on the morphology and crystallinity of the deposits is investigated using scanning electron microscopy, X-ray diffraction, Raman spectroscopy and optical microscopy. An attempt is also made to rationalise the role of temperature in electrodeposition and its influence on the aforementioned properties.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117638"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1764519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imidazole and imidazolium functionalized poly(vinyl chloride) blended polymer membranes reinforced by PTFE for vanadium redox flow batteries 钒氧化还原液流电池用聚四氟乙烯增强咪唑和咪唑功能化聚氯乙烯共混聚合物膜
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117643
Fan Yang , Yu Dai , Yu Zhang , Wei Wei , Shicheng Xu , Ronghuan He
{"title":"Imidazole and imidazolium functionalized poly(vinyl chloride) blended polymer membranes reinforced by PTFE for vanadium redox flow batteries","authors":"Fan Yang ,&nbsp;Yu Dai ,&nbsp;Yu Zhang ,&nbsp;Wei Wei ,&nbsp;Shicheng Xu ,&nbsp;Ronghuan He","doi":"10.1016/j.jelechem.2023.117643","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117643","url":null,"abstract":"<div><p>A novel blended polymer membrane is prepared by a facile route for using as the diaphragm in vanadium redox flow batteries (VRFBs). The polymers polyvinylchloride (PVC) and polyvinylpyrrolidone (PVP) are first blended in a 1.2:1 mol ratio to give a PVP-PVC mixture, and the PVC in the mixture is then functionalized with 1-(3-aminopropyl)-imidazole (APIm). The functionalized polymers are impregnated into the porous polytetrafluoroethylene (PTFE) to fabricate membranes. The obtained membranes possess superior affinity to sulfuric acid mainly due to acid-base interactions between APIm groups and sulfuric acid molecules. The presence of hydrophobic PTFE restricts the deterioration of mechanical strength of membranes by doped acids. Moreover, the prepared membranes exhibit high oxidation stability and low vanadium permeability. The VRFB assembled with the proposed diaphragm displays energy efficiency above 82 % at a current density range of 20 to 120 mA cm<sup>−2</sup>. The membrane-based VRFB demonstrates stable performance after over 50 charge–discharge cycles.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117643"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3206589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electrochromic performance and potential stability of sputtered V2O5 film for a complementary inorganic all-solid-state electrochromic device 互补无机全固态电致变色器件用溅射V2O5薄膜的电致变色性能和电位稳定性
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117628
Hsi-Chao Chen , Yu-Hung Yen , Yu-Xuan Zhuang , Tan-Fu Liu
{"title":"Electrochromic performance and potential stability of sputtered V2O5 film for a complementary inorganic all-solid-state electrochromic device","authors":"Hsi-Chao Chen ,&nbsp;Yu-Hung Yen ,&nbsp;Yu-Xuan Zhuang ,&nbsp;Tan-Fu Liu","doi":"10.1016/j.jelechem.2023.117628","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117628","url":null,"abstract":"<div><p>Vanadium Pentoxide (V<sub>2</sub>O<sub>5</sub>) has good ion storage capacity and weak anodic electrochromism. Since the V<sub>2</sub>O<sub>5</sub> and Tungsten Trioxide<!--> <!-->(WO<sub>3</sub>) films were used as the auxiliary and major color-changing layers, respectively, then they were combined with heat-cured gel (LiClO<sub>4</sub> + PC) + PMMA electrolyte as an complementary all-solid-state electrochromic device (ECD). Also, the V<sub>2</sub>O<sub>5</sub> films were prepared at different oxygen flows and annealing temperatures. These results exhibited that oxygen flow of 4 sccm and annealing temperature of 400 °C can enable the optimal optical contrast (ΔT) to reach 38.7%@550 nm. The response time of the coloring(tc) and the bleaching(tb) were 5 and 4 s, respectively. Raman spectrum showed the stable phase of V<sup>5+</sup> and specific element ratio of 2.52 and X-ray photoelectron spectroscopy (XPS) had the red shift phenomenon. However, the performance of ITO/V<sub>2</sub>O<sub>5</sub>/gel-electrolyte/WO<sub>3</sub>/ITO device, the best working voltage was measured as ±2.5 V, the optical contrast was ΔT = 42% and the response time of tc and tb were 6.5 and 5.5 s, respectively. These results demonstrate that ECD has the advantages of fast response time and low voltage stable startup.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117628"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1624705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-doped porous carbon encapsulated Fe and Ni bimetal derived from MOFs as efficient oxygen reduction reaction catalysts for anion exchange membrane fuel cell mof制备的氮掺杂多孔碳包覆铁镍双金属作为阴离子交换膜燃料电池氧还原反应的高效催化剂
IF 4.5 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.jelechem.2023.117652
Wenzhe Luo , Longsheng Cao , Ming Hou , Zhiwei Ren , Feng Xie , Zhigang Shao
{"title":"N-doped porous carbon encapsulated Fe and Ni bimetal derived from MOFs as efficient oxygen reduction reaction catalysts for anion exchange membrane fuel cell","authors":"Wenzhe Luo ,&nbsp;Longsheng Cao ,&nbsp;Ming Hou ,&nbsp;Zhiwei Ren ,&nbsp;Feng Xie ,&nbsp;Zhigang Shao","doi":"10.1016/j.jelechem.2023.117652","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117652","url":null,"abstract":"<div><p>The anion exchange membrane fuel cell (AEMFC) represents a promising avenue in clean energy equipment. However, its practical application is limited due to the high cost of Pt-based catalysts. Therefore, it is necessary to develop cheap and efficient non-precious metal catalysts. Here in, we employed a simple one-step thermal strategy to synthesize <em>N</em>-doped porous carbon encapsulated Fe and Ni bimetal catalysts (FeNi-N-C-1-1-Ts, T = 900, 950, 1000, 1050 and 1100 ℃). Among these catalysts, FeNi-N-C-1-1-1000 exhibited the highest half-wave potential of 0.885 V, 5 mV higher than 20 wt% Pt/C (0.880 V). Furthermore, it demonstrated a dominant 4e<sup>-</sup> reduction pathway, exceptional durability and high resistance to methanol. These excellent performances were attributed to the synergistic effect of FeNi bimetallicaction, increased graphitic content, higher Fe/Ni-N<sub>4</sub> content, larger BET surface area and the presence of mesoporous structures. Moreover, FeNi-N-C-1-1-1000 exhibited higher half-wave potential than Ni-N-C-1000 and Fe-N-C-1000 owing to the smaller particle size and larger BET surface area of FeNi-N-C after the doping of Ni into Fe-N-C. Finally, FeNi-N-C-1-1-1000 was employed as the cathode in the AEMFC with a loading of 2.0 mg·cm<sup>−2</sup>, resulting in the highest peak power density of 545 mW·cm<sup>−2</sup>, surpassing that of 20 wt% Pt/C (375 mW·cm<sup>−2</sup>) by 170 mW·cm<sup>−2</sup>.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117652"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3082224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信