Comparing the electrochemical degradation of levofloxacin using the modified Ti/SnO2 electrode in different electrolytes

IF 4.5 3区 化学 Q1 Chemical Engineering
Jing Meng , Cong Geng , Yang Wu , Yinyan Guan , Weichun Gao , Wei Jiang , Jiyan Liang , Shiyue Liu , Xueying Wang
{"title":"Comparing the electrochemical degradation of levofloxacin using the modified Ti/SnO2 electrode in different electrolytes","authors":"Jing Meng ,&nbsp;Cong Geng ,&nbsp;Yang Wu ,&nbsp;Yinyan Guan ,&nbsp;Weichun Gao ,&nbsp;Wei Jiang ,&nbsp;Jiyan Liang ,&nbsp;Shiyue Liu ,&nbsp;Xueying Wang","doi":"10.1016/j.jelechem.2023.117633","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study is to develop an electrode material with high electrocatalytic activity, good stability and low price for the degradation of the new pollutant - antibiotic levofloxacin (LEV). A novel modified Ti/SnO<sub>2</sub> electrode is prepared using a sol–gel method combined with spraying. The morphology of the Ti/SnO<sub>2</sub>-Sb-Ni/SiO<sub>2</sub> electrode was performed by field emission scanning electron microscopy, which revealed a smooth and flat surface. It can be seen from the results of X-ray diffraction and electrochemical tests, the electrode possessed finer grain size (2.68 nm) and slightly higher oxygen evolution potential (OEP, 1.87 V). Electrochemical degradation experiments show that the removal rate of LEV in Na<sub>2</sub>SO<sub>4</sub> and NaNO<sub>3</sub> solutions reached 100% after 10 min reaction, while in NaCl solution the reaction time (LEV 100% removal) was shortened to 3 min, indicating a faster removal rate. An electrical energy consumption per order of magnitude (EE/O) of LEV degraded by Ti/SnO<sub>2</sub>-Sb-Ni/SiO<sub>2</sub> electrode was only 0.59 kWh m<sup>−3</sup> for an initial concentration of 20 mg/L LEV with a volume of 400 mL. According to the changes of UV–visible absorption spectra during the LEV degradation, the damage degree of conjugated structures in LEV molecules varies with different electrolytes. The existence of hydroxyl radical (•OH) and sulfate radical (SO<sub>4</sub><sup>•−</sup>) was confirmed by radical quenching experiment and EPR text with 100 mM 5,5-Dimethyl-1-pyrrolidine <em>N</em>-oxide (DMPO). In different electrolytes, SO<sub>4</sub><sup>•−</sup> (in Na<sub>2</sub>SO<sub>4</sub> solution), •OH (in NaNO<sub>3</sub> solution) and active chlorine(in NaCl solution) played a leading role in LEV degradation, respectively.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117633"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723004939","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to develop an electrode material with high electrocatalytic activity, good stability and low price for the degradation of the new pollutant - antibiotic levofloxacin (LEV). A novel modified Ti/SnO2 electrode is prepared using a sol–gel method combined with spraying. The morphology of the Ti/SnO2-Sb-Ni/SiO2 electrode was performed by field emission scanning electron microscopy, which revealed a smooth and flat surface. It can be seen from the results of X-ray diffraction and electrochemical tests, the electrode possessed finer grain size (2.68 nm) and slightly higher oxygen evolution potential (OEP, 1.87 V). Electrochemical degradation experiments show that the removal rate of LEV in Na2SO4 and NaNO3 solutions reached 100% after 10 min reaction, while in NaCl solution the reaction time (LEV 100% removal) was shortened to 3 min, indicating a faster removal rate. An electrical energy consumption per order of magnitude (EE/O) of LEV degraded by Ti/SnO2-Sb-Ni/SiO2 electrode was only 0.59 kWh m−3 for an initial concentration of 20 mg/L LEV with a volume of 400 mL. According to the changes of UV–visible absorption spectra during the LEV degradation, the damage degree of conjugated structures in LEV molecules varies with different electrolytes. The existence of hydroxyl radical (•OH) and sulfate radical (SO4•−) was confirmed by radical quenching experiment and EPR text with 100 mM 5,5-Dimethyl-1-pyrrolidine N-oxide (DMPO). In different electrolytes, SO4•− (in Na2SO4 solution), •OH (in NaNO3 solution) and active chlorine(in NaCl solution) played a leading role in LEV degradation, respectively.

Abstract Image

比较了改性钛/SnO2电极在不同电解液中对左氧氟沙星的电化学降解
本研究旨在开发一种电催化活性高、稳定性好、价格低廉的电极材料,用于降解新型污染物——抗生素左氧氟沙星(LEV)。采用溶胶-凝胶法制备了一种新型改性钛/SnO2电极。用场发射扫描电镜观察了Ti/SnO2-Sb-Ni/SiO2电极的形貌,电极表面光滑平整。从x射线衍射和电化学测试结果可以看出,该电极具有更细的晶粒尺寸(2.68 nm)和稍高的析氧电位(OEP, 1.87 V)。电化学降解实验表明,在Na2SO4和NaNO3溶液中反应10 min后,LEV的去除率达到100%,而在NaCl溶液中反应时间缩短至3 min(100%去除LEV),去除率更快。当初始浓度为20 mg/L、体积为400 mL时,Ti/SnO2-Sb-Ni/SiO2电极降解LEV的每数量级电能消耗(EE/O)仅为0.59 kWh m−3。根据降解过程中紫外可见吸收光谱的变化可知,不同电解质对LEV分子中共轭结构的破坏程度不同。用100 mM 5,5-二甲基-1-吡咯啉n -氧化物(DMPO)进行自由基猝灭实验和EPR分析,证实了羟基自由基(•OH)和硫酸盐自由基(SO4•−)的存在。在不同电解质中,SO4•−(Na2SO4溶液)、•OH (NaNO3溶液)和活性氯(NaCl溶液)分别对LEV的降解起主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electroanalytical Chemistry
Journal of Electroanalytical Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
7.50
自引率
6.70%
发文量
912
审稿时长
>12 weeks
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信