Electronic Journal of Qualitative Theory of Differential Equations最新文献

筛选
英文 中文
An implicit system of delay differential algebraic equations from hydrodynamics 流体力学中时滞微分代数方程的隐式系统
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2023-01-01 DOI: 10.14232/ejqtde.2023.1.28
Fanni Kádár, G. Stépán
{"title":"An implicit system of delay differential algebraic equations from hydrodynamics","authors":"Fanni Kádár, G. Stépán","doi":"10.14232/ejqtde.2023.1.28","DOIUrl":"https://doi.org/10.14232/ejqtde.2023.1.28","url":null,"abstract":"Direct spring operated pressure relief valves connected to a constantly charged vessel and a downstream pipe have a complex dynamics. The vessel-valve subsystem is described with an autonomous system of ordinary differential equations, while the presence of the pipe adds two partial differential equations to the mathematical model. The partial differential equations are transformed to a delay algebraic equation coupled to the ordinary differential equations. Due to a square root nonlinearity, the system is implicit. The linearized system can be transformed to a standard system of neutral delay differential equations (NDDEs) having more elaborated literature than the delay algebraic equations. First, the different forms of the mathematical model are presented, then the transformation of the linearized system is conducted. The paper aims at introducing this unusual mathematical model of an engineering system and inducing research focusing on the methodology to carry out bifurcation analysis in implicit NDDEs.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66586206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A class of singularly perturbed Robin boundary value problems in critical case 一类临界情况下的奇异摄动Robin边值问题
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2023-01-01 DOI: 10.14232/ejqtde.2023.1.34
Hao Zhang, Na Wang
{"title":"A class of singularly perturbed Robin boundary value problems in critical case","authors":"Hao Zhang, Na Wang","doi":"10.14232/ejqtde.2023.1.34","DOIUrl":"https://doi.org/10.14232/ejqtde.2023.1.34","url":null,"abstract":"This paper discusses a class of nonlinear singular perturbation problems with Robin boundary values in critical cases. By using the boundary layer function method and successive approximation theory, the corresponding asymptotic expansions of small parameters are constructed, and the existence of uniformly efficient smooth solutions is proved. Meanwhile, we give a concrete example to prove the validity of our results.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66586394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ground state solution for fractional problem with critical combined nonlinearities 临界组合非线性分数阶问题的基态解
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2023-01-01 DOI: 10.14232/ejqtde.2023.1.38
Er-Wei Xu, Hong-Rui Sun
{"title":"Ground state solution for fractional problem with critical combined nonlinearities","authors":"Er-Wei Xu, Hong-Rui Sun","doi":"10.14232/ejqtde.2023.1.38","DOIUrl":"https://doi.org/10.14232/ejqtde.2023.1.38","url":null,"abstract":"<jats:p>This paper is concerned with the following nonlocal problem with combined critical nonlinearities <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>s</mml:mi> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>q</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>γ<!-- γ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msubsup> <mml:mn>2</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>s</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mspace width=\"1em\" /> <mml:mtext>in</mml:mtext> <mml:mtext> </mml:mtext> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo>,</mml:mo> <mml:mspace width=\"1em\" /> <mml:mspace width=\"1em\" /> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mspace width=\"1em\" /> <mml:mtext>in</mml:mtext> <mml:mtext> </mml:mtext> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> <mml:mi class=\"MJX-variant\" mathvariant=\"normal\">∖<!-- ∖ --></mml:mi> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo>,</mml:mo> </mml:math> where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math>, <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> <mml:mo>></mml:mo> <mml:m","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66586232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New monotonicity properties and oscillation of $n$-order functional differential equations with deviating argument 带偏离参数的n阶泛函微分方程的新单调性和振荡性
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2023-01-01 DOI: 10.14232/ejqtde.2023.1.30
B. Baculíková
{"title":"New monotonicity properties and oscillation of $n$-order functional differential equations with deviating argument","authors":"B. Baculíková","doi":"10.14232/ejqtde.2023.1.30","DOIUrl":"https://doi.org/10.14232/ejqtde.2023.1.30","url":null,"abstract":"<jats:p>In this paper, we offer new technique for investigation of the even order linear differential equations of the form <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mtable displaystyle=\"true\"> <mml:mlabeledtr> <mml:mtd id=\"mjx-eqn-E\"> <mml:mrow> <mml:mtext>(</mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>E</mml:mi> </mml:mrow> <mml:mtext>)</mml:mtext> </mml:mrow> </mml:mtd> <mml:mtd> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>.</mml:mo> </mml:mtd> </mml:mlabeledtr> </mml:mtable> </mml:math> We establish new criteria for bounded and unbounded oscillation of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow class=\"MathJax_ref\" href=\"#mjx-eqn-E\"> <mml:mrow> <mml:mtext>(</mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>E</mml:mi> </mml:mrow> <mml:mtext>)</mml:mtext> </mml:mrow> </mml:mrow> </mml:math> which improve a number of related ones in the literature. Our approach essentially involves establishing stronger monotonicities for the positive solutions of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow class=\"MathJax_ref\" href=\"#mjx-eqn-E\"> <mml:mrow> <mml:mtext>(</mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>E</mml:mi> </mml:mrow> <mml:mtext>)</mml:mtext> </mml:mrow> </mml:mrow> </mml:math> than those presented in known works. We illustrate the improvement over known results by applying and comparing our technique with the other known methods on the particular examples.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66586328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence of weak solutions of elliptic problems with datum in L 1 带基准的椭圆型问题弱解的收敛性
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2023-01-01 DOI: 10.14232/ejqtde.2023.1.21
Antonio Jesús Martínez Aparicio
{"title":"Convergence of weak solutions of elliptic problems with datum in L 1 ","authors":"Antonio Jesús Martínez Aparicio","doi":"10.14232/ejqtde.2023.1.21","DOIUrl":"https://doi.org/10.14232/ejqtde.2023.1.21","url":null,"abstract":"&lt;jats:p&gt;Motivated by the $Q$-condition result proven by Arcoya and Boccardo in [J. Funct. Anal. 268(2015), No. 5, 1153–1166], we analyze the behaviour of the weak solutions &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;{&lt;/mml:mo&gt; &lt;mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"&gt; &lt;mml:mtr&gt; &lt;mml:mtd&gt; &lt;mml:mo&gt;−&lt;!-- − --&gt;&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Δ&lt;!-- Δ --&gt;&lt;/mml:mi&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mi&gt;ε&lt;!-- ε --&gt;&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mi&gt;ε&lt;!-- ε --&gt;&lt;/mml:mi&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mi&gt;ε&lt;!-- ε --&gt;&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mtd&gt; &lt;mml:mtd&gt; &lt;mml:mtext&gt;in &lt;/mml:mtext&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Ω&lt;!-- Ω --&gt;&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:mtd&gt; &lt;/mml:mtr&gt; &lt;mml:mtr&gt; &lt;mml:mtd&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mi&gt;ε&lt;!-- ε --&gt;&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mtd&gt; &lt;mml:mtd&gt; &lt;mml:mtext&gt;on &lt;/mml:mtext&gt; &lt;mml:mi mathvariant=\"normal\"&gt;∂&lt;!-- ∂ --&gt;&lt;/mml:mi&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Ω&lt;!-- Ω --&gt;&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:mtd&gt; &lt;/mml:mtr&gt; &lt;/mml:mtable&gt; &lt;mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" /&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; when &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mi&gt;ε&lt;!-- ε --&gt;&lt;/mml:mi&gt; &lt;/mml:math&gt; tends to &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:math&gt;. Here, &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Ω&lt;!-- Ω --&gt;&lt;/mml:mi&gt; &lt;/mml:math&gt; denotes a bounded open set of &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msup&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;R&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;N&lt;/mml:mi","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66585842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and asymptotic behavior of nontrivial solution for Klein–Gordon–Maxwell system with steep potential well 具有陡势阱的Klein-Gordon-Maxwell方程组非平凡解的存在性和渐近性
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2023-01-01 DOI: 10.14232/ejqtde.2023.1.17
Xueping Wen, Chunfang Chen
{"title":"Existence and asymptotic behavior of nontrivial solution for Klein–Gordon–Maxwell system with steep potential well","authors":"Xueping Wen, Chunfang Chen","doi":"10.14232/ejqtde.2023.1.17","DOIUrl":"https://doi.org/10.14232/ejqtde.2023.1.17","url":null,"abstract":"&lt;jats:p&gt;In this paper, we consider the following nonlinear Klein–Gordon–Maxwell system with a steep potential well &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;{&lt;/mml:mo&gt; &lt;mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"&gt; &lt;mml:mtr&gt; &lt;mml:mtd&gt; &lt;mml:mo&gt;−&lt;!-- − --&gt;&lt;/mml:mo&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Δ&lt;!-- Δ --&gt;&lt;/mml:mi&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;λ&lt;!-- λ --&gt;&lt;/mml:mi&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mo&gt;−&lt;!-- − --&gt;&lt;/mml:mo&gt; &lt;mml:mi&gt;μ&lt;!-- μ --&gt;&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;mml:mi&gt;ω&lt;!-- ω --&gt;&lt;/mml:mi&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mi&gt;ϕ&lt;!-- ϕ --&gt;&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mi&gt;ϕ&lt;!-- ϕ --&gt;&lt;/mml:mi&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:mtd&gt; &lt;mml:mtd&gt; &lt;mml:mtext&gt;in&lt;/mml:mtext&gt; &lt;mml:mspace width=\"thinmathspace\" /&gt; &lt;mml:msup&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;R&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mn&gt;3&lt;/mml:mn&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:mtd&gt; &lt;/mml:mtr&gt; &lt;mml:mtr&gt; &lt;mml:mtd&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Δ&lt;!-- Δ --&gt;&lt;/mml:mi&gt; &lt;mml:mi&gt;ϕ&lt;!-- ϕ --&gt;&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mi&gt;μ&lt;!-- μ --&gt;&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;ω&lt;!-- ω --&gt;&lt;/mml:mi&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mi&gt;ϕ&lt;!-- ϕ --&gt;&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;u&lt;/mml:mi&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:mtd&gt; &lt;mml:mtd&gt; &lt;mml:mtext&gt;in&lt;/mml:mtext&gt; &lt;mml:mspace width=\"thinmathspace\" /&gt; &lt;mml:msup&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;R&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mn&gt;3&lt;/mml:mn&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:mtd&gt; &lt;/mml:mtr&gt; &lt;/mml:mtable&gt; &lt;mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" /&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; where &lt;mml:m","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"326 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66585861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global algebraic Poincaré–Bendixson annulus for the Rayleigh equation Rayleigh方程的全局代数poincar<s:1> - bendixson环
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2023-01-01 DOI: 10.14232/ejqtde.2023.1.35
Alexander Grin, Klaus R. Schneider
{"title":"Global algebraic Poincaré–Bendixson annulus for the Rayleigh equation","authors":"Alexander Grin, Klaus R. Schneider","doi":"10.14232/ejqtde.2023.1.35","DOIUrl":"https://doi.org/10.14232/ejqtde.2023.1.35","url":null,"abstract":"We consider the Rayleigh equation x ¨ + λ ( x ˙ 2 / 3 − 1 ) x ˙ + x = 0 depending on the real parameter λ and construct a Poincaré–Bendixson annulus A λ in the phase plane containing the unique limit cycle Γ λ of the Rayleigh equation for all λ > 0 . The novelty of this annulus consists in the fact that its boundaries are algebraic curves depending on λ . The polynomial defining the interior boundary represents a special Dulac–Cherkas function for the Rayleigh equation which immediately implies that the Rayleigh equation has at most one limit cycle. The outer boundary is the diffeomorphic image of the corresponding boundary for the van der Pol equation. Additionally we present some equations which are linearly topologically equivalent to the Rayleigh equation and provide also for these equations global algebraic Poincaré–Bendixson annuli.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66586101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some classes of solvable difference equations related to iteration processes 与迭代过程有关的几类可解差分方程
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2023-01-01 DOI: 10.14232/ejqtde.2023.1.5
Equations S. Stević
{"title":"On some classes of solvable difference equations related to iteration\u0000 processes","authors":"\t\tEquations\t\t\tS. Stević","doi":"10.14232/ejqtde.2023.1.5","DOIUrl":"https://doi.org/10.14232/ejqtde.2023.1.5","url":null,"abstract":"We present several classes of nonlinear difference equations solvable in closed form, which can be obtained from some known iteration processes, and for some of them we give some generalizations by presenting methods for constructing them. We also conduct several analyses and give many comments related to the difference equations and iteration processes.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"79 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80907256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the analytic commutator for Λ−Ω differential systems 关于Λ−Ω微分系统的解析换向器
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2023-01-01 DOI: 10.14232/ejqtde.2023.1.25
Zhengxin Zhou
{"title":"On the analytic commutator for Λ−Ω differential systems","authors":"Zhengxin Zhou","doi":"10.14232/ejqtde.2023.1.25","DOIUrl":"https://doi.org/10.14232/ejqtde.2023.1.25","url":null,"abstract":"In this paper, we give the necessary and sufficient conditions for some Ω differential systems to have an analytic commutator, use these properties to judge the origin point of the Ω differential systems to be an isochronous center.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"417 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66586515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Addendum to ``Ulam–Hyers stability and exponentially dichotomic equations in Banach spaces'' [Electron. J. Qual. Theory Differ. Equ. 2023, No. 8, 1–10] “Banach空间中的Ulam-Hyers稳定性和指数二分方程”的附录[电子]。J.理论不同。方程2023,第8期,1-10]
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2023-01-01 DOI: 10.14232/ejqtde.2023.1.43
A. Buică
{"title":"Addendum to ``Ulam–Hyers stability and exponentially dichotomic equations in Banach spaces'' [Electron. J. Qual. Theory Differ. Equ. 2023, No. 8, 1–10]","authors":"A. Buică","doi":"10.14232/ejqtde.2023.1.43","DOIUrl":"https://doi.org/10.14232/ejqtde.2023.1.43","url":null,"abstract":"We add relevant references about which we learned after the completion of the initial work. We mainly show how the concept of exponential trichotomy can successfully replace the one of exponential dichotomy in some results from the paper in the title.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"86 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66587024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信