An implicit system of delay differential algebraic equations from hydrodynamics

IF 1.1 4区 数学 Q1 MATHEMATICS
Fanni Kádár, G. Stépán
{"title":"An implicit system of delay differential algebraic equations from hydrodynamics","authors":"Fanni Kádár, G. Stépán","doi":"10.14232/ejqtde.2023.1.28","DOIUrl":null,"url":null,"abstract":"Direct spring operated pressure relief valves connected to a constantly charged vessel and a downstream pipe have a complex dynamics. The vessel-valve subsystem is described with an autonomous system of ordinary differential equations, while the presence of the pipe adds two partial differential equations to the mathematical model. The partial differential equations are transformed to a delay algebraic equation coupled to the ordinary differential equations. Due to a square root nonlinearity, the system is implicit. The linearized system can be transformed to a standard system of neutral delay differential equations (NDDEs) having more elaborated literature than the delay algebraic equations. First, the different forms of the mathematical model are presented, then the transformation of the linearized system is conducted. The paper aims at introducing this unusual mathematical model of an engineering system and inducing research focusing on the methodology to carry out bifurcation analysis in implicit NDDEs.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2023.1.28","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Direct spring operated pressure relief valves connected to a constantly charged vessel and a downstream pipe have a complex dynamics. The vessel-valve subsystem is described with an autonomous system of ordinary differential equations, while the presence of the pipe adds two partial differential equations to the mathematical model. The partial differential equations are transformed to a delay algebraic equation coupled to the ordinary differential equations. Due to a square root nonlinearity, the system is implicit. The linearized system can be transformed to a standard system of neutral delay differential equations (NDDEs) having more elaborated literature than the delay algebraic equations. First, the different forms of the mathematical model are presented, then the transformation of the linearized system is conducted. The paper aims at introducing this unusual mathematical model of an engineering system and inducing research focusing on the methodology to carry out bifurcation analysis in implicit NDDEs.
流体力学中时滞微分代数方程的隐式系统
直接弹簧操作的减压阀连接到一个不断充电的容器和下游管道具有复杂的动力学。容器-阀门子系统用常微分方程的自治系统来描述,而管道的存在给数学模型增加了两个偏微分方程。将偏微分方程转化为与常微分方程耦合的时滞代数方程。由于是平方根非线性,系统是隐式的。线性化系统可以转化为中立型时滞微分方程的标准系统,具有比时滞代数方程更详尽的文献。首先给出了数学模型的不同形式,然后对线性化后的系统进行了变换。本文旨在介绍工程系统的这种不同寻常的数学模型,并对隐式NDDEs中进行分岔分析的方法进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信