{"title":"Cyclic locally recoverable LCD codes with the help of cyclotomic polynomials","authors":"Anuj Kumar Bhagat, Ritumoni Sarma","doi":"10.1016/j.ffa.2024.102519","DOIUrl":"10.1016/j.ffa.2024.102519","url":null,"abstract":"<div><div>This article explores two families of cyclic codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> of length <em>n</em> denoted by <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span>, which are generated by the <em>n</em>-th cyclotomic polynomial <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and the polynomial <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, respectively. We find formulae for the distance of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> for each <span><math><mi>n</mi><mo>></mo><mn>1</mn></math></span> and conjecture formulae for the distance of their (Euclidean) duals. We prove the conjecture when <em>n</em> is a product of at most two distinct prime powers. Moreover, we show that all these codes are LCD codes, and several subfamilies are both <em>r</em>-optimal and <em>d</em>-optimal locally recoverable codes.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102519"},"PeriodicalIF":1.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some new constructions of optimal and almost optimal locally repairable codes","authors":"Varsha Chauhan, Anuradha Sharma","doi":"10.1016/j.ffa.2024.102518","DOIUrl":"10.1016/j.ffa.2024.102518","url":null,"abstract":"<div><div>Additive codes over finite fields are natural extensions of linear codes and are useful in constructing quantum error-correcting codes. In this paper, we first study the locality properties of additive MDS codes over finite fields whose dual codes are also MDS. We further provide a method to construct optimal and almost optimal LRCs with new parameters belonging to the family of additive codes, which are not MDS. More precisely, for an integer <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>2</mn></math></span> and a prime power <em>q</em>, we provide a method to construct optimal and almost optimal <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-additive LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msub></math></span> with locality <em>r</em> that relies on the existence of certain special polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, which we shall refer to as <span><math><mo>(</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, (note that <span><math><mo>(</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> coincide with <em>r</em>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> when <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>). We also derive sufficient conditions under which <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-additive LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msub></math></span> constructed using the aforementioned method are optimal. We further provide four general methods to construct <span><math><mo>(</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, which give rise to several classes of optimal and almost optimal LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msub></math></span> with locality <em>r</em>. To illustrate these results, we list several optimal LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><m","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102518"},"PeriodicalIF":1.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The generalized Suzuki curve","authors":"Saeed Tafazolian","doi":"10.1016/j.ffa.2024.102514","DOIUrl":"10.1016/j.ffa.2024.102514","url":null,"abstract":"<div><div>We present a characterization of the generalized Suzuki curve, focusing on its genus and automorphism group.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"100 ","pages":"Article 102514"},"PeriodicalIF":1.2,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Few-weight linear codes over Fp from t-to-one mappings","authors":"René Rodríguez-Aldama","doi":"10.1016/j.ffa.2024.102510","DOIUrl":"10.1016/j.ffa.2024.102510","url":null,"abstract":"<div><div>For any prime number <em>p</em>, we provide two classes of linear codes with few weights over a <em>p</em>-ary alphabet. These codes are based on a well-known generic construction (the defining-set method), stemming on a class of monomials and a class of trinomials over finite fields. The considered monomials are Dembowski-Ostrom monomials <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup></math></span>, for a suitable choice of the exponent <em>α</em>, so that, when <span><math><mi>p</mi><mo>></mo><mn>2</mn></math></span> and <span><math><mi>n</mi><mo>≢</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, these monomials are planar. We study the properties of such monomials in detail for each integer <span><math><mi>n</mi><mo>></mo><mn>1</mn></math></span> and any prime number <em>p</em>. In particular, we show that they are <em>t</em>-to-one, where the parameter <em>t</em> depends on the field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> and it takes the values <span><math><mn>1</mn><mo>,</mo><mn>2</mn></math></span> or <span><math><mi>p</mi><mo>+</mo><mn>1</mn></math></span>. Moreover, we give a simple proof of the fact that the functions are <em>δ</em>-uniform with <span><math><mi>δ</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>4</mn><mo>,</mo><mi>p</mi><mo>}</mo></math></span>. This result describes the differential behavior of these monomials for any <em>p</em> and <em>n</em>. For the second class of functions, we consider an affine equivalent trinomial to <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup></math></span>, namely, <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>λ</mi><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></msup><mo>+</mo><msup><mrow><mi>λ</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></msup><mi>x</mi></math></span> for <span><math><mi>λ</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. We prove that these trinomials satisfy certain regularity properties, which are useful for the specification of linear codes with three or four weights that are different than the monomial construction. These families of codes contain projective codes and optimal codes (with respect to the Griesmer bound). Remarkably, they contain infinite families of self-orthogonal and minimal <em>p</em>-ary linear codes for every prime number <em>p</em>. Our findings highlight the utility of st","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"100 ","pages":"Article 102510"},"PeriodicalIF":1.2,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drinfeld module and Weil pairing over Dedekind domain of class number two","authors":"Chuangqiang Hu , Xiao-Min Huang","doi":"10.1016/j.ffa.2024.102516","DOIUrl":"10.1016/j.ffa.2024.102516","url":null,"abstract":"<div><div>The primary objective of this paper is to derive explicit formulas for rank one and rank two Drinfeld modules over a specific domain denoted by <span><math><mi>A</mi></math></span>. This domain corresponds to the projective line associated with an infinite place of degree two. To achieve the goals, we construct a pair of standard rank one Drinfeld modules whose coefficients are in the Hilbert class field of <span><math><mi>A</mi></math></span>. We demonstrate that the period lattice of the exponential functions corresponding to both modules behaves similarly to the period lattice of the Carlitz module, the standard rank one Drinfeld module defined over rational function fields. Moreover, we employ Anderson's <em>t</em>-motive to obtain the complete family of rank two Drinfeld modules. This family is parameterized by the invariant <span><math><mi>J</mi><mo>=</mo><msup><mrow><mi>λ</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup></math></span> which effectively serves as the counterpart of the <em>j</em>-invariant for elliptic curves. Building upon the concepts introduced by van der Heiden, particularly with regard to rank two Drinfeld modules, we are able to reformulate the Weil pairing of Drinfeld modules of any rank using a specialized polynomial in multiple variables known as the Weil operator. As an illustrative example, we provide a detailed examination of a more explicit formula for the Weil pairing and the Weil operator of rank two Drinfeld modules over the domain <span><math><mi>A</mi></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"100 ","pages":"Article 102516"},"PeriodicalIF":1.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A spherical extension theorem and applications in positive characteristic","authors":"Doowon Koh , Thang Pham","doi":"10.1016/j.ffa.2024.102515","DOIUrl":"10.1016/j.ffa.2024.102515","url":null,"abstract":"<div><div>In this paper, we prove an extension theorem for spheres of square radii in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, which improves a result obtained by Iosevich and Koh <span><span>[9]</span></span> (2010). Our main tool is a new point-hyperplane incidence bound which will be derived via a cone restriction theorem due to the authors and Lee (2022). Applications on the distance problems will be also discussed.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102515"},"PeriodicalIF":1.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quadratic residue patterns, algebraic curves and a K3 surface","authors":"Valentina Kiritchenko , Michael Tsfasman , Serge Vlăduţ , Ilya Zakharevich","doi":"10.1016/j.ffa.2024.102517","DOIUrl":"10.1016/j.ffa.2024.102517","url":null,"abstract":"<div><div>Quadratic residue patterns modulo a prime are studied since 19th century. In the first part we extend existing results on the number of consecutive <em>ℓ</em>-tuples of quadratic residues, studying corresponding algebraic curves and their Jacobians, which happen to be products of Jacobians of hyperelliptic curves. In the second part we state the last unpublished result of Lydia Goncharova on squares such that their differences are also squares, reformulate it in terms of algebraic geometry of a K3 surface, and prove it. The core of this theorem is an unexpected relation between the number of points on the K3 surface and that on a CM elliptic curve.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102517"},"PeriodicalIF":1.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Francisco Gottig , Mariana Pérez , Melina Privitelli
{"title":"An approach to the moments subset sum problem through systems of diagonal equations over finite fields","authors":"Juan Francisco Gottig , Mariana Pérez , Melina Privitelli","doi":"10.1016/j.ffa.2024.102511","DOIUrl":"10.1016/j.ffa.2024.102511","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mspace></mspace><mi>q</mi></mrow></msub></math></span> be the finite field of <em>q</em> elements. Let <em>m</em> and <em>k</em> be positive integers, <span><math><mi>b</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mspace></mspace><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> and <span><math><mi>D</mi><mo>⊂</mo><msub><mrow><mi>F</mi></mrow><mrow><mspace></mspace><mi>q</mi></mrow></msub></math></span> with <span><math><mi>k</mi><mo>≤</mo><mo>|</mo><mi>D</mi><mo>|</mo></math></span>. Our aim is to determine the existence of a subset <span><math><mi>S</mi><mo>⊂</mo><mi>D</mi></math></span> of cardinality <em>k</em> such that <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>S</mi></mrow></msub><msup><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></math></span>. This problem is known as the <em>moments subset sum problem</em>. We take a novel approach to this problem by establishing a connection between the existence of such a subset <em>S</em> with the problem of determining if a certain system of diagonal equations has at least one rational solution with distinct coordinates. To achieve this, we study some relevant geometric properties of the set of solutions of the mentioned system. This analysis allows us to provide estimates on the number of rational solutions of systems of diagonal equations and we subsequently apply these results to address the <em>moments subset sum problem</em>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"100 ","pages":"Article 102511"},"PeriodicalIF":1.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On hyperelliptic Jacobians with complex multiplication by Q(−2+2)","authors":"Tomasz Jędrzejak","doi":"10.1016/j.ffa.2024.102512","DOIUrl":"10.1016/j.ffa.2024.102512","url":null,"abstract":"<div><div>Consider a one-parameter family of hyperelliptic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>+</mo><mn>3</mn><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>2</mn><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>6</mn><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>3</mn><msup><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msup><mi>x</mi><mo>+</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> defined over <span><math><mi>Q</mi></math></span>, and their Jacobians <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> where without loss of generality <em>a</em> is a non-zero squarefree integer. Clearly, the curve <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> is a quadratic twist by <em>a</em> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. Note that <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> has complex multiplication by the quartic field <span><math><mi>Q</mi><mrow><mo>(</mo><msqrt><mrow><mo>−</mo><mn>2</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></msqrt><mo>)</mo></mrow></math></span>. For a prime <span><math><mi>p</mi><mo>∤</mo><mn>2</mn><mi>a</mi></math></span> we obtain types of reduction (supersingular, superspecial, ordinary) of <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> at <em>p</em> in terms of congruences modulo 16 and the exact formulas for the zeta function of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> for <span><math><mi>p</mi><mo>≢</mo><mn>1</mn><mo>,</mo><mn>7</mn><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>16</mn><mo>)</mo></mrow></math></span>. We deduce as conclusions the complete characterization of torsion subgroups of <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></math></span>, namely <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mi>tors</mi></mrow></msub><mo>=</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mo>[</mo><mn>2</mn><mo>]</mo></mrow><mo>≃</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi></math></span>, and some information about <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><m","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"100 ","pages":"Article 102512"},"PeriodicalIF":1.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erasure list-decodable codes and Turán hypercube problems","authors":"Noga Alon","doi":"10.1016/j.ffa.2024.102513","DOIUrl":"10.1016/j.ffa.2024.102513","url":null,"abstract":"<div><div>We observe that several vertex Turán type problems for the hypercube that received a considerable amount of attention in the combinatorial community are equivalent to questions about erasure list-decodable codes. Analyzing a recent construction of Ellis, Ivan and Leader, and determining the Turán density of certain hypergraph augmentations we obtain improved bounds for some of these problems.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"100 ","pages":"Article 102513"},"PeriodicalIF":1.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}