{"title":"Permutation polynomials of the form xrh(xq−1) over Fq2 with even characteristics","authors":"Amritanshu Rai, Rohit Gupta","doi":"10.1016/j.ffa.2025.102594","DOIUrl":"10.1016/j.ffa.2025.102594","url":null,"abstract":"<div><div>Let <em>r</em> be a positive integer, <em>q</em> be a prime power and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> be the finite field of order <em>q</em>. In this paper, we investigate six classes of permutation polynomials of the form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> with <em>q</em> even, for specific values of <em>r</em> and for some choices of <span><math><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>. One of them is a generalization of a known class of permutation polynomials, while another two deal with some open problems.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"104 ","pages":"Article 102594"},"PeriodicalIF":1.2,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143403590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Four families of q-ary self-orthogonal codes via the defining-set construction","authors":"Jiayuan Zhang, Xiaoshan Kai, Ping Li, Shixin Zhu","doi":"10.1016/j.ffa.2025.102586","DOIUrl":"10.1016/j.ffa.2025.102586","url":null,"abstract":"<div><div>Self-orthogonal codes have a wide range of applications in various fields, especially communication and cryptography. In this paper, we construct four families of linear codes over finite fields via a defining-set construction. The weight distributions of these codes are determined. We show that most of these codes are self-orthogonal and reach the Grismer bound.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"104 ","pages":"Article 102586"},"PeriodicalIF":1.2,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143403641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the construction of nonbinary LCD quadratic residue and double quadratic residue codes","authors":"Arezoo Soufi Karbaski , Taher Abualrub , Irfan Siap , Hashem Bordbar","doi":"10.1016/j.ffa.2025.102591","DOIUrl":"10.1016/j.ffa.2025.102591","url":null,"abstract":"<div><div>Linear complementary dual (LCD) codes are an important class of error-correcting codes because of their applications in many areas such as their applications in cryptography and secret sharing <span><span>[1]</span></span>, <span><span>[4]</span></span>, <span><span>[7]</span></span>. In this paper, we construct a large class of nonbinary LCD codes from the class of nonbinary quadratic residue (QR) codes and nonbinary double QR codes. We have also introduced the class of extended quasi quadratic residue (QQR) codes and construct self-orthogonal codes from these codes. As an application of our study, we have presented an optimal ternary self-orthogonal code of parameters <span><math><mo>[</mo><mn>24</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>12</mn><mo>]</mo></math></span>. We have also constructed examples of self-orthogonal codes with parameters <span><math><msub><mrow><mo>[</mo><mn>2</mn><mrow><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo><mfrac><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mi>d</mi><mo>]</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> and also examples of LCD codes with parameters <span><math><msub><mrow><mo>[</mo><mn>2</mn><mi>q</mi><mo>,</mo><mfrac><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mi>d</mi><mo>]</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>[</mo><mn>2</mn><mi>q</mi><mo>,</mo><mfrac><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mi>d</mi><mo>]</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> for different values of primes <em>p</em> and <em>q</em>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102591"},"PeriodicalIF":1.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143386537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homogenization of binary linear codes and their applications","authors":"Jong Yoon Hyun , Nilay Kumar Mondal , Yoonjin Lee","doi":"10.1016/j.ffa.2025.102589","DOIUrl":"10.1016/j.ffa.2025.102589","url":null,"abstract":"<div><div>We introduce a new technique, called <em>homogenization</em>, for a systematic construction of augmented codes of binary linear codes, using the defining set approach in connection to multi-variable functions. We explicitly determine the parameters and the weight distribution of the homogenized codes when the defining set is either a simplicial complex generated by any finite number of elements, or the difference of two simplicial complexes, each of which is generated by a single maximal element. Using this homogenization technique, we produce several infinite families of optimal codes, self-orthogonal codes, minimal codes, and self-complementary codes. As applications, we obtain some best known <em>quantum error-correcting codes</em>, infinite families of <em>intersecting codes</em> (used in the construction of covering arrays), and we compute the <em>Trellis complexity</em> (required for decoding) for several families of codes as well.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102589"},"PeriodicalIF":1.2,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143272335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New classes of optimal p-ary cyclic codes with minimum distance four","authors":"Zhengbang Zha , Lei Hu , Gaofei Wu","doi":"10.1016/j.ffa.2025.102588","DOIUrl":"10.1016/j.ffa.2025.102588","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>e</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow></msub></math></span> denote the <em>p</em>-ary cyclic code with three zeros. In this paper, we present six classes of optimal <em>p</em>-ary cyclic codes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>e</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow></msub></math></span> with parameters <span><math><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>]</mo></math></span> by using the quadratic and quartic characters on finite fields. In addition, we propose a class of optimal quinary cyclic codes by determining the solutions of equations over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>5</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102588"},"PeriodicalIF":1.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143272334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On matrix algebras isomorphic to finite fields and planar Dembowski-Ostrom monomials","authors":"Christof Beierle , Patrick Felke","doi":"10.1016/j.ffa.2025.102590","DOIUrl":"10.1016/j.ffa.2025.102590","url":null,"abstract":"<div><div>Let <em>p</em> be a prime and <em>n</em> a positive integer. As the first main result, we present a <em>deterministic</em> algorithm for deciding whether the matrix algebra <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>]</mo></math></span> with <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>∈</mo><mrow><mi>GL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> is a finite field, performing at most <span><math><mi>O</mi><mo>(</mo><mi>t</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></msup><mi>log</mi><mo></mo><mo>(</mo><mi>p</mi><mo>)</mo><mo>)</mo></math></span> elementary operations in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. In the affirmative case, the algorithm returns a defining element <em>a</em> so that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mi>a</mi><mo>]</mo></math></span>.</div><div>We then study an invariant for the extended-affine equivalence of Dembowski-Ostrom (DO) polynomials. More precisely, for a DO polynomial <span><math><mi>g</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, we associate to <em>g</em> a set of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices with coefficients in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, denoted <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span>, that stays invariant up to matrix similarity when applying extended-affine equivalence transformations to <em>g</em>. In the case where <em>g</em> is a <em>planar</em> DO polynomial, <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> is the set of quotients <span><math><mi>X</mi><msup><mrow><mi>Y</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>Y</mi><mo>≠</mo><mn>0</mn><mo>,</mo><mi>X</mi></math></span> being elements from the spread set of the corresponding commutative presemifield, and <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> forms a field of order <span><math><msup><mrow><mi>p</","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102590"},"PeriodicalIF":1.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143272333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New constructions of abelian non-cyclic orbit codes based on parabolic subgroups and tensor products","authors":"Soleyman Askary, Nader Biranvand, Farrokh Shirjian","doi":"10.1016/j.ffa.2025.102587","DOIUrl":"10.1016/j.ffa.2025.102587","url":null,"abstract":"<div><div>Orbit codes, as special constant dimension subspace codes, have attracted much attention due to their applications for error correction in random network coding. They arise as orbits of a subspace of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> under the action of some subgroup of the finite general linear group <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. The main contribution of this paper is to propose new methods for constructing large non-cyclic orbit codes. First, using the subgroup structure of maximal subgroups of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, we propose a new construction of an abelian non-cyclic orbit codes of size <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> with <span><math><mi>k</mi><mo>≤</mo><mi>n</mi><mo>/</mo><mn>2</mn></math></span>. The proposed code is shown to be a partial spread which in many cases is close to the known maximum-size codes. Next, considering a larger framework, we introduce the notion of tensor product operation for subspace codes and explicitly determine the parameters of such product codes. The parameters of the constructions presented in this paper improve the constructions already obtained in <span><span>[6]</span></span> and <span><span>[7]</span></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102587"},"PeriodicalIF":1.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An analogue of Girstmair's formula in function fields","authors":"Daisuke Shiomi","doi":"10.1016/j.ffa.2025.102585","DOIUrl":"10.1016/j.ffa.2025.102585","url":null,"abstract":"<div><div>Suppose that <em>p</em> is an odd prime and <span><math><mi>g</mi><mo>></mo><mn>1</mn></math></span> is a primitive root modulo <em>p</em>. Let <em>M</em> be a number field contained in the <em>p</em>-th cyclotomic field. In 1994, Girstmair found a surprising relation between the relative class number of <em>M</em> and the digits of <span><math><mn>1</mn><mo>/</mo><mi>p</mi></math></span> in base <em>g</em>. In this paper, we consider an analogue of Girstmair's formula in function fields. Suppose that <span><math><mi>P</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo></math></span> is monic irreducible and <span><math><mi>G</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo></math></span> is a primitive root modulo <em>P</em>. Let <em>L</em> be a field extension of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span> which is contained in the <em>P</em>-th cyclotomic function field. Our goal is to give relations between the plus and minus parts of the divisor class number of <em>L</em> and the digits of <span><math><mn>1</mn><mo>/</mo><mi>P</mi></math></span> in base <em>G</em>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102585"},"PeriodicalIF":1.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fq-primitive points on varieties over finite fields","authors":"Soniya Takshak , Giorgos Kapetanakis , Rajendra Kumar Sharma","doi":"10.1016/j.ffa.2025.102582","DOIUrl":"10.1016/j.ffa.2025.102582","url":null,"abstract":"<div><div>Let <em>r</em> be a positive divisor of <span><math><mi>q</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> a rational function of degree sum <em>d</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> with some restrictions, where the degree sum of a rational function <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>/</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is the sum of the degrees of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>. In this article, we discuss the existence of triples <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>f</mi><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, where <span><math><mi>α</mi><mo>,</mo><mi>β</mi></math></span> are primitive and <span><math><mi>f</mi><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> is an <em>r</em>-primitive element of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In particular, this implies the existence of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-primitive points on the surfaces of the form <span><math><msup><mrow><mi>z</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>. As an example, we apply our results on the unit sphere over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102582"},"PeriodicalIF":1.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The distance function on Coxeter-like graphs and self-dual codes","authors":"Marko Orel , Draženka Višnjić","doi":"10.1016/j.ffa.2025.102580","DOIUrl":"10.1016/j.ffa.2025.102580","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be the set of all invertible <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric matrices over the binary field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Let <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the graph with the vertex set <span><math><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> where a pair of matrices <span><math><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>}</mo></math></span> form an edge if and only if <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. In particular, <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the well-known Coxeter graph. The distance function <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is described for all matrices <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The diameter of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is computed. For odd <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, it is shown that each matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> such that <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>I</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> where <em>I</em> is the identity matrix induces a self-dual code in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span>. Conversely, each self-dual code <em>C</em> induces a family <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> of such matrices <em>A</em>. The families given by distinct self-dual codes are disjoint. The identification <span><math><mi>C</mi><mo>↔</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> provides a graph theoretical description of self-dual codes. A result of Janusz (2007) is reproved and strengthened by showing that the orthogo","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102580"},"PeriodicalIF":1.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143139998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}