{"title":"二元基元双纠错BCH码的第二广义覆盖半径","authors":"Lev Yohananov , Moshe Schwartz","doi":"10.1016/j.ffa.2025.102648","DOIUrl":null,"url":null,"abstract":"<div><div>We completely determine the second covering radius for binary primitive double-error-correcting BCH codes. As part of this process, we provide a lower bound on the second covering radius for binary primitive BCH codes correcting more than two errors.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"107 ","pages":"Article 102648"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The second generalized covering radius of binary primitive double-error-correcting BCH codes\",\"authors\":\"Lev Yohananov , Moshe Schwartz\",\"doi\":\"10.1016/j.ffa.2025.102648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We completely determine the second covering radius for binary primitive double-error-correcting BCH codes. As part of this process, we provide a lower bound on the second covering radius for binary primitive BCH codes correcting more than two errors.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"107 \",\"pages\":\"Article 102648\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725000784\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000784","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The second generalized covering radius of binary primitive double-error-correcting BCH codes
We completely determine the second covering radius for binary primitive double-error-correcting BCH codes. As part of this process, we provide a lower bound on the second covering radius for binary primitive BCH codes correcting more than two errors.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.