{"title":"A Comparison of Some Approximate Confidence Intervals for a Single Proportion for Clustered Binary Outcome Data","authors":"Krishna K. Saha, Daniel Miller, Suojin Wang","doi":"10.1515/ijb-2015-0024","DOIUrl":"https://doi.org/10.1515/ijb-2015-0024","url":null,"abstract":"Abstract Interval estimation of the proportion parameter in the analysis of binary outcome data arising in cluster studies is often an important problem in many biomedical applications. In this paper, we propose two approaches based on the profile likelihood and Wilson score. We compare them with two existing methods recommended for complex survey data and some other methods that are simple extensions of well-known methods such as the likelihood, the generalized estimating equation of Zeger and Liang and the ratio estimator approach of Rao and Scott. An extensive simulation study is conducted for a variety of parameter combinations for the purposes of evaluating and comparing the performance of these methods in terms of coverage and expected lengths. Applications to biomedical data are used to illustrate the proposed methods.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"37 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66987679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using Relative Statistics and Approximate Disease Prevalence to Compare Screening Tests","authors":"Samuel Frank, Abigail Craig","doi":"10.1515/IJB-2016-0017","DOIUrl":"https://doi.org/10.1515/IJB-2016-0017","url":null,"abstract":"Schatzkin et al. and other authors demonstrated that the ratios of some conditional statistics such as the true positive fraction are equal to the ratios of unconditional statistics, such as disease detection rates, and therefore we can calculate these ratios between two screening tests on the same population even if negative test patients are not followed with a reference procedure and the true and false negative rates are unknown. We demonstrate that this same property applies to an expected utility metric. We also demonstrate that while simple estimates of relative specificities and relative areas under ROC curves (AUC) do depend on the unknown negative rates, we can write these ratios in terms of disease prevalence, and the dependence of these ratios on a posited prevalence is often weak particularly if that prevalence is small or the performance of the two screening tests is similar. Therefore we can estimate relative specificity or AUC with little loss of accuracy, if we use an approximate value of disease prevalence.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":"1-9"},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/IJB-2016-0017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66988126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sample Size for Assessing Agreement between Two Methods of Measurement by Bland−Altman Method","authors":"Mengfei Lu, Weihua Zhong, Yu-xiu Liu, Hua-zhang Miao, Yong-Chang Li, Mu-Huo Ji","doi":"10.1515/ijb-2015-0039","DOIUrl":"https://doi.org/10.1515/ijb-2015-0039","url":null,"abstract":"Abstract: The Bland–Altman method has been widely used for assessing agreement between two methods of measurement. However, it remains unsolved about sample size estimation. We propose a new method of sample size estimation for Bland–Altman agreement assessment. According to the Bland–Altman method, the conclusion on agreement is made based on the width of the confidence interval for LOAs (limits of agreement) in comparison to predefined clinical agreement limit. Under the theory of statistical inference, the formulae of sample size estimation are derived, which depended on the pre-determined level of α, β, the mean and the standard deviation of differences between two measurements, and the predefined limits. With this new method, the sample sizes are calculated under different parameter settings which occur frequently in method comparison studies, and Monte-Carlo simulation is used to obtain the corresponding powers. The results of Monte-Carlo simulation showed that the achieved powers could coincide with the pre-determined level of powers, thus validating the correctness of the method. The method of sample size estimation can be applied in the Bland–Altman method to assess agreement between two methods of measurement.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66987760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive Design for Staggered-Start Clinical Trial","authors":"A. Yuan, Qizhai Li, Ming Xiong, M. Tan","doi":"10.1515/ijb-2015-0011","DOIUrl":"https://doi.org/10.1515/ijb-2015-0011","url":null,"abstract":"Abstract In phase II and/or III clinical trial study, there are several competing treatments, the goal is to assess the performances of the treatments at the end of the study, the trial design aims to minimize risks to the patients in the trial, according to some given allocation optimality criterion. Recently, a new type of clinical trial, the staggered-start trial has been proposed in some studies, in which different treatments enter the same trial at different times. Some basic questions for this trial are whether optimality can still be kept? under what conditions? and if so how to allocate the the coming patients to treatments to achieve such optimality? Here we propose and study a class of adaptive designs of staggered-start clinical trials, in which for given optimality criterion object, we show that as long as the initial sizes at the beginning of the successive trials are not too large relative to the total sample size, the proposed design can still achieve optimality criterion asymptotically for the allocation proportions as the ordinary trials; if these initial sample sizes have about the same magnitude as the total sample size, full optimality cannot be achieved. The proposed method is simple to use and is illustrated with several examples and a simulation study.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66987633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asanao Shimokawa, Y. Narita, S. Shibui, E. Miyaoka
{"title":"Tree Based Method for Aggregate Survival Data Modeling","authors":"Asanao Shimokawa, Y. Narita, S. Shibui, E. Miyaoka","doi":"10.1515/ijb-2015-0071","DOIUrl":"https://doi.org/10.1515/ijb-2015-0071","url":null,"abstract":"Abstract In many scenarios, a patient in medical research is treated as a statistical unit. However, in some scenarios, we are interested in treating aggregate data as a statistical unit. In such situations, each set of aggregated data is considered to be a concept in a symbolic representation, and each concept has a hyperrectangle or multiple points in the variable space. To construct a tree-structured model from these aggregate survival data, we propose a new approach, where a datum can be included in several terminal nodes in a tree. By constructing a model under this condition, we expect to obtain a more flexible model while retaining the interpretive ease of a hierarchical structure. In this approach, the survival function of concepts that are partially included in a node is constructed using the Kaplan-Meier method, where the number of events and risks at each time point is replaced by the expectation value of the number of individual descriptions of concepts. We present an application of this proposed model using primary brain tumor patient data. As a result, we obtained a new interpretation of the data in comparison to the classical survival tree modeling methods.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"39 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66987991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploration of Heterogeneous Treatment Effects via Concave Fusion","authors":"Shujie Ma, Jian Huang, Zhiwei Zhang, Mingming Liu","doi":"10.1515/ijb-2018-0026","DOIUrl":"https://doi.org/10.1515/ijb-2018-0026","url":null,"abstract":"Abstract Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"16 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66988175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Linn, Bilwaj Gaonkar, J. Doshi, C. Davatzikos, R. Shinohara
{"title":"Addressing Confounding in Predictive Models with an Application to Neuroimaging","authors":"K. Linn, Bilwaj Gaonkar, J. Doshi, C. Davatzikos, R. Shinohara","doi":"10.1515/ijb-2015-0030","DOIUrl":"https://doi.org/10.1515/ijb-2015-0030","url":null,"abstract":"Abstract Understanding structural changes in the brain that are caused by a particular disease is a major goal of neuroimaging research. Multivariate pattern analysis (MVPA) comprises a collection of tools that can be used to understand complex disease efxcfects across the brain. We discuss several important issues that must be considered when analyzing data from neuroimaging studies using MVPA. In particular, we focus on the consequences of confounding by non-imaging variables such as age and sex on the results of MVPA. After reviewing current practice to address confounding in neuroimaging studies, we propose an alternative approach based on inverse probability weighting. Although the proposed method is motivated by neuroimaging applications, it is broadly applicable to many problems in machine learning and predictive modeling. We demonstrate the advantages of our approach on simulated and real data examples.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":"31 - 44"},"PeriodicalIF":1.2,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66987699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Goldstein, E. Polley, F. Briggs, M. J. van der Laan, A. Hubbard
{"title":"Testing the Relative Performance of Data Adaptive Prediction Algorithms: A Generalized Test of Conditional Risk Differences","authors":"B. Goldstein, E. Polley, F. Briggs, M. J. van der Laan, A. Hubbard","doi":"10.1515/ijb-2015-0014","DOIUrl":"https://doi.org/10.1515/ijb-2015-0014","url":null,"abstract":"Abstract Comparing the relative fit of competing models can be used to address many different scientific questions. In classical statistics one can, if appropriate, use likelihood ratio tests and information based criterion, whereas clinical medicine has tended to rely on comparisons of fit metrics like C-statistics. However, for many data adaptive modelling procedures such approaches are not suitable. In these cases, statisticians have used cross-validation, which can make inference challenging. In this paper we propose a general approach that focuses on the “conditional” risk difference (conditional on the model fits being fixed) for the improvement in prediction risk. Specifically, we derive a Wald-type test statistic and associated confidence intervals for cross-validated test sets utilizing the independent validation within cross-validation in conjunction with a test for multiple comparisons. We show that this test maintains proper Type I Error under the null fit, and can be used as a general test of relative fit for any semi-parametric model alternative. We apply the test to a candidate gene study to test for the association of a set of genes in a genetic pathway.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":"117 - 129"},"PeriodicalIF":1.2,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66987670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Semiparametric Bayesian Approach for Analyzing Longitudinal Data from Multiple Related Groups","authors":"Kiranmoy Das, Prince Afriyie, Lauren Spirko","doi":"10.1515/ijb-2015-0002","DOIUrl":"https://doi.org/10.1515/ijb-2015-0002","url":null,"abstract":"Abstract Often the biological and/or clinical experiments result in longitudinal data from multiple related groups. The analysis of such data is quite challenging due to the fact that groups might have shared information on the mean and/or covariance functions. In this article, we consider a Bayesian semiparametric approach of modeling the mean trajectories for longitudinal response coming from multiple related groups. We consider matrix stick-breaking process priors on the group mean parameters which allows information sharing on the mean trajectories across the groups. Simulation studies are performed to demonstrate the effectiveness of the proposed approach compared to the more traditional approaches. We analyze data from a one-year follow-up of nutrition education for hypercholesterolemic children with three different treatments where the children are from different age-groups. Our analysis provides more clinically useful information than the previous analysis of the same dataset. The proposed approach will be a very powerful tool for analyzing data from clinical trials and other medical experiments.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"30 1","pages":"273 - 284"},"PeriodicalIF":1.2,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66987590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple-Objective Optimal Designs for Studying the Dose Response Function and Interesting Dose Levels","authors":"Seung Won Hyun, W. Wong","doi":"10.1515/ijb-2015-0044","DOIUrl":"https://doi.org/10.1515/ijb-2015-0044","url":null,"abstract":"Abstract We construct an optimal design to simultaneously estimate three common interesting features in a dose-finding trial with possibly different emphasis on each feature. These features are (1) the shape of the dose-response curve, (2) the median effective dose and (3) the minimum effective dose level. A main difficulty of this task is that an optimal design for a single objective may not perform well for other objectives. There are optimal designs for dual objectives in the literature but we were unable to find optimal designs for 3 or more objectives to date with a concrete application. A reason for this is that the approach for finding a dual-objective optimal design does not work well for a 3 or more multiple-objective design problem. We propose a method for finding multiple-objective optimal designs that estimate the three features with user-specified higher efficiencies for the more important objectives. We use the flexible 4-parameter logistic model to illustrate the methodology but our approach is applicable to find multiple-objective optimal designs for other types of objectives and models. We also investigate robustness properties of multiple-objective optimal designs to mis-specification in the nominal parameter values and to a variation in the optimality criterion. We also provide computer code for generating tailor made multiple-objective optimal designs.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"11 1","pages":"253 - 271"},"PeriodicalIF":1.2,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66988220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}