{"title":"Cell Line Classification Using Electric Cell-Substrate Impedance Sensing (ECIS)","authors":"Megan L. Gelsinger, Laura L. Tupper, D. Matteson","doi":"10.1515/ijb-2018-0083","DOIUrl":null,"url":null,"abstract":"Abstract We present new methods for cell line classification using multivariate time series bioimpedance data obtained from electric cell-substrate impedance sensing (ECIS) technology. The ECIS technology, which monitors the attachment and spreading of mammalian cells in real time through the collection of electrical impedance data, has historically been used to study one cell line at a time. However, we show that if applied to data from multiple cell lines, ECIS can be used to classify unknown or potentially mislabeled cells, factors which have previously been associated with the reproducibility crisis in the biological literature. We assess a range of approaches to this new problem, testing different classification methods and deriving a dictionary of 29 features to characterize ECIS data. Most notably, our analysis enriches the current field by making use of simultaneous multi-frequency ECIS data, where previous studies have focused on only one frequency; using classification methods to distinguish multiple cell lines, rather than simple statistical tests that compare only two cell lines; and assessing a range of features derived from ECIS data based on their classification performance. In classification tests on fifteen mammalian cell lines, we obtain very high out-of-sample predictive accuracy. These preliminary findings provide a baseline for future large-scale studies in this field.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"16 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0083","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0083","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Abstract We present new methods for cell line classification using multivariate time series bioimpedance data obtained from electric cell-substrate impedance sensing (ECIS) technology. The ECIS technology, which monitors the attachment and spreading of mammalian cells in real time through the collection of electrical impedance data, has historically been used to study one cell line at a time. However, we show that if applied to data from multiple cell lines, ECIS can be used to classify unknown or potentially mislabeled cells, factors which have previously been associated with the reproducibility crisis in the biological literature. We assess a range of approaches to this new problem, testing different classification methods and deriving a dictionary of 29 features to characterize ECIS data. Most notably, our analysis enriches the current field by making use of simultaneous multi-frequency ECIS data, where previous studies have focused on only one frequency; using classification methods to distinguish multiple cell lines, rather than simple statistical tests that compare only two cell lines; and assessing a range of features derived from ECIS data based on their classification performance. In classification tests on fifteen mammalian cell lines, we obtain very high out-of-sample predictive accuracy. These preliminary findings provide a baseline for future large-scale studies in this field.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.