{"title":"Combinatorial Mixtures of Multiparameter Distributions: An Application to Bivariate Data","authors":"V. Edefonti, G. Parmigiani","doi":"10.1515/ijb-2015-0064","DOIUrl":null,"url":null,"abstract":"Abstract: We introduce combinatorial mixtures – a flexible class of models for inference on mixture distributions whose components have multidimensional parameters. The key idea is to allow each element of the component-specific parameter vectors to be shared by a subset of other components. This approach allows for mixtures that range from very flexible to very parsimonious and unifies inference on component-specific parameters with inference on the number of components. We develop Bayesian inference and computational approaches for this class of distributions, and illustrate them in an application. This work was originally motivated by the analysis of cancer subtypes: in terms of biological measures of interest, subtypes may be characterized by differences in location, scale, correlations or any of the combinations. We illustrate our approach using publicly available data on molecular subtypes of lung and prostate cancers.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0064","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2015-0064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: We introduce combinatorial mixtures – a flexible class of models for inference on mixture distributions whose components have multidimensional parameters. The key idea is to allow each element of the component-specific parameter vectors to be shared by a subset of other components. This approach allows for mixtures that range from very flexible to very parsimonious and unifies inference on component-specific parameters with inference on the number of components. We develop Bayesian inference and computational approaches for this class of distributions, and illustrate them in an application. This work was originally motivated by the analysis of cancer subtypes: in terms of biological measures of interest, subtypes may be characterized by differences in location, scale, correlations or any of the combinations. We illustrate our approach using publicly available data on molecular subtypes of lung and prostate cancers.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.