Marta Tallarita, M. De Iorio, A. Guglielmi, J. Malone‐Lee
{"title":"递归事件推理的贝叶斯自回归脆弱性模型","authors":"Marta Tallarita, M. De Iorio, A. Guglielmi, J. Malone‐Lee","doi":"10.1515/ijb-2018-0088","DOIUrl":null,"url":null,"abstract":"Abstract We propose autoregressive Bayesian semi-parametric models for gap times between recurrent events. The aim is two-fold: inference on the effect of possibly time-varying covariates on the gap times and clustering of individuals based on the time trajectory of the recurrent event. Time-dependency between gap times is taken into account through the specification of an autoregressive component for the frailty parameters influencing the response at different times. The order of the autoregression may be assumed unknown and is an object of inference. We consider two alternative approaches to perform model selection under this scenario. Covariates may be easily included in the regression framework and censoring and missing data are easily accounted for. As the proposed methodologies lie within the class of Dirichlet process mixtures, posterior inference can be performed through efficient MCMC algorithms. We illustrate the approach through simulations and medical applications involving recurrent hospitalizations of cancer patients and successive urinary tract infections.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0088","citationCount":"2","resultStr":"{\"title\":\"Bayesian Autoregressive Frailty Models for Inference in Recurrent Events\",\"authors\":\"Marta Tallarita, M. De Iorio, A. Guglielmi, J. Malone‐Lee\",\"doi\":\"10.1515/ijb-2018-0088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose autoregressive Bayesian semi-parametric models for gap times between recurrent events. The aim is two-fold: inference on the effect of possibly time-varying covariates on the gap times and clustering of individuals based on the time trajectory of the recurrent event. Time-dependency between gap times is taken into account through the specification of an autoregressive component for the frailty parameters influencing the response at different times. The order of the autoregression may be assumed unknown and is an object of inference. We consider two alternative approaches to perform model selection under this scenario. Covariates may be easily included in the regression framework and censoring and missing data are easily accounted for. As the proposed methodologies lie within the class of Dirichlet process mixtures, posterior inference can be performed through efficient MCMC algorithms. We illustrate the approach through simulations and medical applications involving recurrent hospitalizations of cancer patients and successive urinary tract infections.\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2018-0088\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2018-0088\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0088","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian Autoregressive Frailty Models for Inference in Recurrent Events
Abstract We propose autoregressive Bayesian semi-parametric models for gap times between recurrent events. The aim is two-fold: inference on the effect of possibly time-varying covariates on the gap times and clustering of individuals based on the time trajectory of the recurrent event. Time-dependency between gap times is taken into account through the specification of an autoregressive component for the frailty parameters influencing the response at different times. The order of the autoregression may be assumed unknown and is an object of inference. We consider two alternative approaches to perform model selection under this scenario. Covariates may be easily included in the regression framework and censoring and missing data are easily accounted for. As the proposed methodologies lie within the class of Dirichlet process mixtures, posterior inference can be performed through efficient MCMC algorithms. We illustrate the approach through simulations and medical applications involving recurrent hospitalizations of cancer patients and successive urinary tract infections.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.