Metal Working and Material Science最新文献

筛选
英文 中文
The effect of laser surfacing modes on the geometrical characteristics of the single laser tracks 激光堆焊模式对单一激光轨道几何特性的影响
Metal Working and Material Science Pub Date : 2024-06-07 DOI: 10.17212/1994-6309-2024-26.2-57-70
Svetlana Dolgova, Alexander Malikov, Alexander Golyshev, A. Nikulina
{"title":"The effect of laser surfacing modes on the geometrical characteristics of the single laser tracks","authors":"Svetlana Dolgova, Alexander Malikov, Alexander Golyshev, A. Nikulina","doi":"10.17212/1994-6309-2024-26.2-57-70","DOIUrl":"https://doi.org/10.17212/1994-6309-2024-26.2-57-70","url":null,"abstract":"Introduction. Laser surfacing is one of the leading trends in the field of additive technologies, which consists in layer-by-layer build of material using a laser as an energy source. To obtain a high-quality product, it is necessary to select the optimal building parameters correctly. The problem is that such optimization is necessary for all equipment, since minor differences in its characteristics can make significant changes in the parameters of layer-by-layer build. In order to determine the optimal build mode, it is enough to analyze the effect of various equipment parameters on the characteristics of single tracks. Therefore, the purpose of this work is to determine the most important parameters of laser radiation that affect the surfacing process and the optimal mode for building a single track of chromium-nickel steel. The work investigated single tracks obtained by laser surfacing of powder from austenitic chromium-nickel steel AISI 316L. The optimization factors included such characteristics as laser power, beam speed, flow rate of supplied powder and laser spot size. The wavelength of laser radiation was 1.07 μm. Research methods. To determine the quality and geometric dimensions of single tracks, the macrostructure of cross sections of specimens was studied using metallography and scanning electron microscopy methods. Results and discussion. It is established that the optimal mode for growing single tracks of steel AISI 316L is characterized by a laser radiation power of 1,250 W and a scanning speed of 25 mm/s. In this case, the optimal powder consumption rate is 12 g/min, and the laser spot size is 4.1 mm. The work shows that the powder consumption and laser spot size have the greatest influence on the coefficient of effective use of powder material. By changing it, the surfacing performance can be increased by 10–15 %.","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":"7 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141375688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of the rate of electrochemical dissolution of U10A steel under ECM conditions with a stationary cathode-tool 利用固定阴极工具测定 U10A 钢在 ECM 条件下的电化学溶解速率
Metal Working and Material Science Pub Date : 2024-06-07 DOI: 10.17212/1994-6309-2024-26.2-95-106
Vasiliy Yanpolskiy, Maria Ivanova, Alexandra Nasonova, Alexander Yanyushkin
{"title":"Determination of the rate of electrochemical dissolution of U10A steel under ECM conditions with a stationary cathode-tool","authors":"Vasiliy Yanpolskiy, Maria Ivanova, Alexandra Nasonova, Alexander Yanyushkin","doi":"10.17212/1994-6309-2024-26.2-95-106","DOIUrl":"https://doi.org/10.17212/1994-6309-2024-26.2-95-106","url":null,"abstract":"Introduction. In blank production, when replacing hard alloys with tool steels, difficulties arise in shaping surfaces to ensure the required parameters of productivity, quality and accuracy, due to the presence of incomplete information for assigning electrochemical processing modes for this class of materials. This fact requires additional research to determine rational processing modes that provide the necessary technological parameters (productivity, dimensional accuracy and surface roughness). The purpose of the work is to conduct research to establish the patterns of electrochemical shaping of tool steels and determine the modes of the shaping process. The work investigated the features of anodic dissolution of U10A tool steel in an aqueous NaCl solution of 10 % concentration. The range of potential changes was from 0 to 8 V. Technological performance parameters were determined (current output for the main reaction and the rate of electrochemical dissolution at a voltage of 8 V and an electrolyte pressure of 0.1 MPa). Research methods. For polarization studies, a potentiodynamic research method was chosen. Technological experiments were carried out using the model of piercing holes with a stationary cathode-tool made of stainless steel without insulation. A circular cross-section with outer diameters of 0.908 mm and inner diameters of 0.603 mm was chosen as a cathode tool. Results and discussions: it is revealed that the electrochemical dissolution of U10A tool steel in a 10 % aqueous solution of NaCl is active in the studied potential range from 0 to 8 V. The technological experiments carried out made it possible to establish the dimensions of the resulting holes — an average diameter of 1.433 mm and a depth of 0.574 mm. The current efficiency was 70.83 %. Based on the analysis of the experimental data obtained, it is established that in order to ensure high productivity of the process of electrochemical forming of U10A steel in a solution of 10 % NaCl, the feed of the cathode tool should be 0.2232 mm/min, which corresponds to the rate of electrochemical dissolution under the studied forming conditions.","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":" 35","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141373561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of technological parameters of the laser engineered net shaping process on the quality of the formed object from titanium alloy VT23 激光工程网成形工艺的技术参数对钛合金 VT23 成形物质量的影响
Metal Working and Material Science Pub Date : 2024-06-07 DOI: 10.17212/1994-6309-2024-26.2-186-198
Ksenia Bazaleeva, D. Safarova, Yulia Ponkratova, Maxim Lugovoi, Elena Tsvetkova, Andrei Alekseev, Mark Zhelezni, Ivan Logachev, F. Baskov
{"title":"The influence of technological parameters of the laser engineered net shaping process on the quality of the formed object from titanium alloy VT23","authors":"Ksenia Bazaleeva, D. Safarova, Yulia Ponkratova, Maxim Lugovoi, Elena Tsvetkova, Andrei Alekseev, Mark Zhelezni, Ivan Logachev, F. Baskov","doi":"10.17212/1994-6309-2024-26.2-186-198","DOIUrl":"https://doi.org/10.17212/1994-6309-2024-26.2-186-198","url":null,"abstract":"Introduction. Laser engineered net shaping (LENS) or Direct metal deposition (DMD) is considered as a promising method for manufacturing products of complex configurations from titanium-based alloys, as it allows minimizing the use of machining and loss of material to waste. Currently, neither the LENS technological process of titanium alloy VT23 has not been developed, nor the structural features of the alloy after LENS have not been studied, which will make it possible to determine the scope of application of the material after LENS. The purpose of this study is to determine optimal modes of the LENS process for manufacturing of quality parts from titanium alloy VT23. Methodology. The alloy specimens obtained with laser power 700÷1300 W in increments of 100 W and scanning speed 600÷1,000 mm/min in increments of 200 mm/min and distance between adjacent laser tracks 0.5–0.9L (L — track width) in increments of 0.2L were analyzed in the study. The elemental composition of the powder material was studied by X-ray fluorescence analysis and reducing combustion in a gas analyzer, the structure of the objects obtained by LENS was analyzed by metallographic and X-ray phase analysis methods as well as microhardness was determined. Results and discussion. It is established that high-quality objects without cracks, with low porosity can be synthesized from VT23 alloy by LENS method using the following modes: laser power 700÷1100 W, scanning speed 800–1,000 mm/min, track spacing 0.5–0.7 of the individual track width L. It is shown that after all investigated LENS modes, the VT23 alloy had a dispersed (α+β) structure of the “basket weave” type. It is revealed that regardless of LENS mode the amount of β-phase in the alloy structure is about 30 %. It is shown that the microhardness of the deposited material does not depend on LENS modes and is 460 HV.","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":" 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The study of vibration disturbance mapping in the geometry of the surface formed by turning 车削表面几何形状中的振动扰动映射研究
Metal Working and Material Science Pub Date : 2024-06-07 DOI: 10.17212/1994-6309-2024-26.2-107-126
V. Zakovorotny, V. Gvindjiliya
{"title":"The study of vibration disturbance mapping in the geometry of the surface formed by turning","authors":"V. Zakovorotny, V. Gvindjiliya","doi":"10.17212/1994-6309-2024-26.2-107-126","DOIUrl":"https://doi.org/10.17212/1994-6309-2024-26.2-107-126","url":null,"abstract":"Introduction. The development of virtual digital models of the machining process on metal-cutting machines is a dynamically developing direction of increasing the efficiency of machine-building production. Such models include subsystems of parts quality prediction. Accuracy and validity of its work directly depends on the built model of dynamic cutting system, which is perturbed by force noise, the sources of which have different physical origin. In addition, the autonomous dynamic system itself is a generator of various attracting sets of deformations, such as limit cycles or chaotic attractors. Taking into account various nonlinear transformations in the properties of the dynamics of the cutting process allows increasing the adequacy of the model to the real process and is an actual task in the construction of simulation modeling systems of the dynamics of surface machining by cutting. Study object. Our earlier studies allow us to determine the geometry corresponding to the deformation trajectories of the surface formed by cutting. However, the adequacy of the mapping of the calculated trajectories to the geometry estimates remains not quite clear. The proposed paper focuses on achieving an adequate mapping of calculated as well as measured strain trajectories into the geometric topology of the part. The aim of the work is to evaluate the mapping of vibration perturbations of the system into the geometry of the surface formed by cutting. Method and methodology. The research is of experimental-theoretical nature. The content of the research includes the study of the correspondence of frequency characteristics obtained on the model and in real machining. The main attention is paid to the mapping of deformations to the part geometry. For this purpose, the paper considers the coherence functions between the strain functions and the part profile. Results and Discussion. It is shown that the conditioning of these transformations has a limited frequency range in which the explanation of the variable components of the generated relief is statistically significant. Mathematical modeling of the dynamic cutting system based on the mechanics of interaction between tool and workpiece allows adequate prediction of the macro geometry of the part formed by cutting. The obtained mathematical tools can be used to create systems for predicting the geometry of the machined surface.","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":" 48","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal stability of extruded Mg-Y-Nd alloy structure 挤压 Mg-Y-Nd 合金结构的热稳定性
Metal Working and Material Science Pub Date : 2024-06-07 DOI: 10.17212/1994-6309-2024-26.2-174-185
A. Eroshenko, E. Legostaeva, Ivan Glukhov, P. Uvarkin, A. Tolmachev, Yurii P. Sharkeev
{"title":"Thermal stability of extruded Mg-Y-Nd alloy structure","authors":"A. Eroshenko, E. Legostaeva, Ivan Glukhov, P. Uvarkin, A. Tolmachev, Yurii P. Sharkeev","doi":"10.17212/1994-6309-2024-26.2-174-185","DOIUrl":"https://doi.org/10.17212/1994-6309-2024-26.2-174-185","url":null,"abstract":"Introduction. Today, bioresorbable magnesium alloys possessing the required physical, mechanical, corrosion, and biological properties, are promising materials for orthopedic and cardiovascular surgery. The addition of rare earth elements such as yttrium, neodymium, and cerium to magnesium alloys improves its properties. Compared to widely used titanium alloys, magnesium alloys have a number of advantages. Bioresorbable materials slowly dissolve in the body, and recurrent operation to remove the implant is not needed. Biocompatible magnesium alloys have a fairly low elastic modulus (10 to 40 GPa), approaching to that of cortical bone, that reduces the contact stress in the bone-implant system. At the same time, strength properties of magnesium alloys alloyed with rare earth elements do not always meet the requirements for medical applications. Severe plastic deformation, for example, equal channel angular pressing, torsion under quasi-hydrostatic pressure, uniaxial forging, extrusion, is therefore very promising technique to gain the high level of mechanical properties of metals and alloys. Severe plastic deformation of magnesium alloys improves its structural strength by 2.5 times due to the generation of an ultrafine-grained and/or fine-grained structure. The issues related to the study of heat resistance, structure and phase composition of magnesium alloys with appropriate strength are relevant. Purpose of the work is to determine the influence of thermal effects on the microstructure of the extruded Mg-Y-Nd alloy. Methodology. The extruded Mg-2.9Y-1.3Nd alloy (95.0 wt. % Mg, 2.9 wt. % Y, 1.3 wt. % Nd,  0.2 wt. % Fe,  0 wt. % Al) is investigated in this paper. The thermal stability of the alloy microstructure is studied after annealing at 100, 300, 350, 450 and 525 °С in argon for one hour. The microstructure and phase composition are investigated using optical, transmission and scanning electron microscopes and analyzed on an X-ray diffractometer. Results and discussion. The extruded Mg-2.9Y-1.3Nd alloy has the bimodal fine-grained microstructure. It is found that along with the stable α-Mg phase, the alloy structure consists of Mg24Y5 intermetallic particles and -, -, and 1-phase precipitates. Annealing in the temperature range of 100–450 °С for one hour has no effect on the structure of the Mg-2.9Y-1.3Nd alloy, but promotes the growth in the linear dimensions of -, -, and 1-phases precipitates. In the temperature range of 300–450 °С, the morphology of -, ,- and 1-phases changes, while the average grain size of the major -phase remains unchanged. Annealing at 525 °С leads to a notable transformation of the bimodal microstructure of the alloy, which is associated with the intensive growth in the grain size of the -phase, Mg24Y5 particles, and -, -, and 1-phases precipitates. Annealing in the temperature range of 100–450 °C leads to an increase in the linear dimensions of Mg24Y5 particles, -, -, and 1-phases precipitate","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":" 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of the kinetics of forming of spherical sliding bearing parts made of corrosion-resistant steels by die forging of porous blanks 多孔坯料模锻耐腐蚀钢球形滑动轴承零件成型动力学研究
Metal Working and Material Science Pub Date : 2024-06-07 DOI: 10.17212/1994-6309-2024-26.2-127-142
Badrudin Gasanov, Nikolai Konko, Sergey Baev
{"title":"Study of the kinetics of forming of spherical sliding bearing parts made of corrosion-resistant steels by die forging of porous blanks","authors":"Badrudin Gasanov, Nikolai Konko, Sergey Baev","doi":"10.17212/1994-6309-2024-26.2-127-142","DOIUrl":"https://doi.org/10.17212/1994-6309-2024-26.2-127-142","url":null,"abstract":"Introduction. Spherical powder sliding bearings are widely used in various branches of mechanical engineering. Therefore, the development of a promising method of production of spherical sliding bearing parts from powders of corrosion-resistant steels with specified properties is an urgent task. Purpose of work: is to study the kinetics of forming during cold die forging of spherical sliding bearing parts from stainless steel powder blanks, and to assess the effect of the chemical composition of lubricants and the design of the pressing tool on the structure and properties of the bearing outer ring. Materials from sprayed powders of stainless chromium-nickel steels obtained by cold die forging of sintered blanks coated with lubricants are studied in the work. The following research methods were used: mechanical tensile testing, metallographic studies and cold die forging process simulation. Results and its discussion. It is revealed that the resistance and work of deformation, as well as the kinetics of forming of the outer ring of the spherical sliding bearing are influenced by chemical composition of powders and lubricants, microstructure and mechanical properties of the blank material, configurations of the end surfaces of punches. The top and bottom edges of the outer bearing are most intensively sealed when the punch faces are made with a chamfer angle of 30–40 degrees. With an increase in the relative strain degree by height up to 0.30–0.35 its residual porosity amounted to 0.5–2.0 %. The features of definition of strain state and calculation of strain energy in the implementation of the offered method and the choice of technological parameters of the cold die forging process of sliding bearings parts are shown. A simple method for calculating and experimentally determining the coefficient of contact friction in the process of cold die forging of porous stainless steel blanks is developed, which allows to establish the effect of lubricant composition on the strain resistance at different values of the degree of radial deformation and to develop optimal methods of cold die forging of porous blanks in the production of parts of different complexity.","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":" 69","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141374569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidation temperatures of WC-Co cemented tungsten carbides WC-Co 合金碳化钨的氧化温度
Metal Working and Material Science Pub Date : 2024-06-07 DOI: 10.17212/1994-6309-2024-26.2-199-211
I. Efimovich, I. Zolotukhin
{"title":"Oxidation temperatures of WC-Co cemented tungsten carbides","authors":"I. Efimovich, I. Zolotukhin","doi":"10.17212/1994-6309-2024-26.2-199-211","DOIUrl":"https://doi.org/10.17212/1994-6309-2024-26.2-199-211","url":null,"abstract":"Introduction. Products containing WC-Co cemented tungsten carbides are commonly used in various industries. It is often operates at elevated temperatures, at which, as noted in the literature, tungsten carbides are susceptible to severe oxidation in air. However, no sufficiently accurate values of oxidation temperatures and dependence of these temperatures and the oxidation rate of tungsten carbides on the cobalt content with its wide variation have been established. The subject of the study is the oxidation process of WC-Co cemented tungsten carbides. The purpose of the work is to obtain the oxidation temperatures of WC-Co cemented tungsten carbides with different cobalt content by weight in the range of 3–20 %. Methods. The dynamics of oxidation was studied in air. Specimens of the same length were heated to a temperature of 850 °C and cooled at the same rate in the furnace of a push-rod dilatometer Netzsch 402 PC while its expansion was simultaneously recorded. The oxidation rate of the specimens was determined by the difference in its length before heating and after cooling. The values of oxidation temperatures were obtained by mathematical analysis of relationships of the expansion on temperature. Results and discussion. Experimental dependences of expansion of WC-Co cemented tungsten carbides on temperature in the range from 20 to 850 °C, and for WC-8Co – up to 1,150 °C, were obtained. The oxidation rate of WC-Co cemented tungsten carbides increased linearly with increasing concentration of tungsten carbides (decreased with increasing cobalt content). During heating, two characteristic temperatures were identified: the onset of oxidation (631±4 °C) and the transition to active oxidation (804±11 °C). The established temperatures were the same for different ratios of tungsten carbides and cobalt. The results can be used when choosing temperature conditions for products made from WC-Co cemented tungsten carbides.","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":" 38","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141374416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of welding engineering properties of basic type electrode coatings of different electrode manufacturers for welding of pipe parts and assemblies of heat exchange surfaces of boiler units 评估不同电极制造商生产的基本型电极涂层的焊接工程特性,用于焊接锅炉机组热交换表面的管道部件和组件
Metal Working and Material Science Pub Date : 2024-06-07 DOI: 10.17212/1994-6309-2024-26.2-71-94
Yulia Karlina, Roman Kononenko, Maksim Popov, Fedor Derjugin, Vladislav Byankin
{"title":"Assessment of welding engineering properties of basic type electrode coatings of different electrode manufacturers for welding of pipe parts and assemblies of heat exchange surfaces of boiler units","authors":"Yulia Karlina, Roman Kononenko, Maksim Popov, Fedor Derjugin, Vladislav Byankin","doi":"10.17212/1994-6309-2024-26.2-71-94","DOIUrl":"https://doi.org/10.17212/1994-6309-2024-26.2-71-94","url":null,"abstract":"Introduction. New grades of high-strength steels, machining and repair processes are being introduced in the power industry. At the same time manual arc welding remains the main technological process for equipment repair in conditions of thermal power plants. Welding materials used in equipment repair should provide comparable to the base metal mechanical properties of the weld. The welding industry has long faced the problem of high sensitivity of basic type electrodes to moisture absorption. High susceptibility to cold cracking caused by diffusible hydrogen and hydrogen embrittlement are major obstacles to the wider use of basic-type electrodes for high-strength steels. Hydrogen production during arc welding is the result of the presence of hydrogen in the arc atmosphere, hydrogen-contaminated filler material, or local hydrogen residues on the source material. During welding, molecular hydrogen is dislocated by the arc energy and then easily absorbed by the molten material. Currently, the welding materials market produces electrodes with basic coating of well-known and proven brands, various national and foreign manufacturers. However, in practice there are cases of cold cracks in the weld seam after welding. Purpose of work is to assess the welding and technological properties of basic type electrode coatings of different manufacturers. The work investigates specimens weld overlaid with electrodes TMU-21U, TSU-5 of different manufacturers and the content of diffusion-mobile hydrogen in the weld overlaid metal is determined. The methods of research are mechanical static tensile tests, chemical composition analysis and metallographic studies. Determination of welding-induced hydrogen content can be accomplished by various quantitative elemental analysis methods. All test methods involve welding under defined conditions followed by deep freezing of the test specimens as quickly as possible. In this way, unintended diffusion processes are inhibited and the hydrogen introduced into the weld metal is retained. Subsequently, the diffusing hydrogen is desorbed from the test specimens in a controlled manner. Results and Discussion. An assessment of welding engineering properties of the electrodes revealed unstable arc burning. Mechanical properties of the welded metal of the investigated electrodes are at the minimum permissible level from the requirements of normative documents. The concentration of hydrogen present in the arc weld metal is multifactorially dependent on the welding procedure (process and parameters, consumables used, as well as environmental conditions (e.g. humidity). For qualitative assessment, hydrogen content of more than 15 cm3/100 g is considered high and hydrogen content less than 5 cm3 ml/100 g is considered very low. Presented results. The conducted evaluation of welding engineering properties of electrodes with basic coating showed satisfactory results. Mechanical properties of the welded metal in terms of impact toughness a","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":"6 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141375723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of cutting forces and machinability during milling of corrosion-resistant powder steel produced by laser metal deposition 对激光金属沉积法生产的耐腐蚀粉末钢铣削过程中的切削力和可加工性的研究
Metal Working and Material Science Pub Date : 2024-06-07 DOI: 10.17212/1994-6309-2024-26.2-38-56
A. Babaev, Victor Kozlov, Artem Semenov, Anton Shevchuk, Valeriia Ovcharenko, E. Sudarev
{"title":"Investigation of cutting forces and machinability during milling of corrosion-resistant powder steel produced by laser metal deposition","authors":"A. Babaev, Victor Kozlov, Artem Semenov, Anton Shevchuk, Valeriia Ovcharenko, E. Sudarev","doi":"10.17212/1994-6309-2024-26.2-38-56","DOIUrl":"https://doi.org/10.17212/1994-6309-2024-26.2-38-56","url":null,"abstract":"Introduction. Additive manufacturing technologies for the production of geometrically approximate workpieces require post-processing. This applies to the use of cutting tools in milling operations when machining critical surfaces. The latter are specified strict requirements to accuracy of linear and angular dimensions and quality of the surface layer. An urgent task remains to increase machining productivity when recording cutting forces and surface roughness to develop technological recommendations. Purpose of work: experimental determination of cutting modes providing the highest productivity when milling LMD-workpieces (Laser Metal Deposition) made of steel 0.12-Cr18-Ni10-Ti (AISI 321) by carbide end mill, while maintaining the milling cutter operability and required roughness. The properties and microstructure of the specimens along and across the build direction are investigated. The influence of feed (when the mill moves across and along the build direction), depth and width of milling, speed on the components of the cutting force and roughness of the machined surfaces during counter milling of LMD-workpieces made of steel 0.12-Cr18-Ni10-Ti (AISI 321) with end mill made of H10F carbide with a diameter of 12 mm without wear-resistant coating is established and formalized. The research methods are the dynamic measurement of all three components of the cutting force using a three-component dynamometer and the measurement of roughness with a profilometer. The condition and microgeometry of the cutting edges were monitored before and after milling using scanning optical and scanning electron microscopy. Results and Discussion. The difference in cutting forces depending on the milling pattern (along and across the build direction) was shown. Studies showed that the milling depth and cutting speed have little effect on the lateral and axial components of the cutting force. The feed force increases significantly with increasing depth of cut, especially when feeding across the specimen build direction. It is found that all three components of the cutting force are directly proportional to the value of the minute feed. The equations for calculating all three components of the cutting force with a change in the minute feed are obtained.","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":" 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141375272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design simulation of modular abrasive tool 模块化磨具的设计模拟
Metal Working and Material Science Pub Date : 2024-06-07 DOI: 10.17212/1994-6309-2024-26.2-158-173
D. Lobanov, V Yu Skeeba, I. Golyushov, Valentin Smirnov, Egor Zverev
{"title":"Design simulation of modular abrasive tool","authors":"D. Lobanov, V Yu Skeeba, I. Golyushov, Valentin Smirnov, Egor Zverev","doi":"10.17212/1994-6309-2024-26.2-158-173","DOIUrl":"https://doi.org/10.17212/1994-6309-2024-26.2-158-173","url":null,"abstract":"Introduction. Grinding is one of the most common types of finishing. It allows the production of surfaces with the required quality parameters and is one of the most available and productive methods for machining high-strength and difficult-to-machine materials. Grinding wheels represent the most prevalent application of grinding technology in mechanical engineering. The use of this abrasive tool helps to increase processing productivity by ensuring the removal of a significant layer of material. In addition, grinding wheels have a longer service life and are widely used in the implementation of hybrid technologies based on the combination of mechanical (abrasive), electrical, chemical, and thermal effects in various combinations. A variety of tool body shapes and types of abrasives allow the use of wheels in a wide variety of production areas. One of the ways to analyze and design a new tool is numerical simulation. In this research, graphic modeling was selected as the most appropriate method for representing the future design of the tool. This approach allows for a more straightforward conceptualization process compared to other modeling techniques. The purpose of the work is to simulate a modular abrasive tool in order to analyze and synthesize structures to increase the efficiency of tool support for the manufacture of products made of high-strength and difficult-to-process materials using traditional or hybrid processing technologies. Research methodology. Theoretical studies are carried out using the basic principles of system analysis, geometric theory of surface formation, cutting tool design, graph theory, mathematical and computer simulation. To solve the problem, we have studied the available designs of modular grinding wheels. There has also been the analysis of the types of abrasive parts, methods of fastening of the abrasive cutting part on the wheel’s body, the materials used for the manufacture of the body, the characteristics of the body of the wheel, and fastening schemes. Results and discussions. A simulation technique based on graphic modelling theory has been developed. A comprehensive investigation of the existing design of the grinding wheel has enabled the identification of the key structural elements that define its design. The data obtained has been used to create a generalized graphic simulation of a modular abrasive tool. This simulation integrates all the components and displays a conditional constructive relationship between them. The developed design methodology was tested on an example of two designs of modular grinding wheels. The theoretical studies established that the design efficiency of modular abrasive tools can be increased by 2–4 times by using the developed simulation technique.","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":" 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141371133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信