Svetlana Dolgova, Alexander Malikov, Alexander Golyshev, A. Nikulina
{"title":"激光堆焊模式对单一激光轨道几何特性的影响","authors":"Svetlana Dolgova, Alexander Malikov, Alexander Golyshev, A. Nikulina","doi":"10.17212/1994-6309-2024-26.2-57-70","DOIUrl":null,"url":null,"abstract":"Introduction. Laser surfacing is one of the leading trends in the field of additive technologies, which consists in layer-by-layer build of material using a laser as an energy source. To obtain a high-quality product, it is necessary to select the optimal building parameters correctly. The problem is that such optimization is necessary for all equipment, since minor differences in its characteristics can make significant changes in the parameters of layer-by-layer build. In order to determine the optimal build mode, it is enough to analyze the effect of various equipment parameters on the characteristics of single tracks. Therefore, the purpose of this work is to determine the most important parameters of laser radiation that affect the surfacing process and the optimal mode for building a single track of chromium-nickel steel. The work investigated single tracks obtained by laser surfacing of powder from austenitic chromium-nickel steel AISI 316L. The optimization factors included such characteristics as laser power, beam speed, flow rate of supplied powder and laser spot size. The wavelength of laser radiation was 1.07 μm. Research methods. To determine the quality and geometric dimensions of single tracks, the macrostructure of cross sections of specimens was studied using metallography and scanning electron microscopy methods. Results and discussion. It is established that the optimal mode for growing single tracks of steel AISI 316L is characterized by a laser radiation power of 1,250 W and a scanning speed of 25 mm/s. In this case, the optimal powder consumption rate is 12 g/min, and the laser spot size is 4.1 mm. The work shows that the powder consumption and laser spot size have the greatest influence on the coefficient of effective use of powder material. By changing it, the surfacing performance can be increased by 10–15 %.","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":"7 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of laser surfacing modes on the geometrical characteristics of the single laser tracks\",\"authors\":\"Svetlana Dolgova, Alexander Malikov, Alexander Golyshev, A. Nikulina\",\"doi\":\"10.17212/1994-6309-2024-26.2-57-70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Laser surfacing is one of the leading trends in the field of additive technologies, which consists in layer-by-layer build of material using a laser as an energy source. To obtain a high-quality product, it is necessary to select the optimal building parameters correctly. The problem is that such optimization is necessary for all equipment, since minor differences in its characteristics can make significant changes in the parameters of layer-by-layer build. In order to determine the optimal build mode, it is enough to analyze the effect of various equipment parameters on the characteristics of single tracks. Therefore, the purpose of this work is to determine the most important parameters of laser radiation that affect the surfacing process and the optimal mode for building a single track of chromium-nickel steel. The work investigated single tracks obtained by laser surfacing of powder from austenitic chromium-nickel steel AISI 316L. The optimization factors included such characteristics as laser power, beam speed, flow rate of supplied powder and laser spot size. The wavelength of laser radiation was 1.07 μm. Research methods. To determine the quality and geometric dimensions of single tracks, the macrostructure of cross sections of specimens was studied using metallography and scanning electron microscopy methods. Results and discussion. It is established that the optimal mode for growing single tracks of steel AISI 316L is characterized by a laser radiation power of 1,250 W and a scanning speed of 25 mm/s. In this case, the optimal powder consumption rate is 12 g/min, and the laser spot size is 4.1 mm. The work shows that the powder consumption and laser spot size have the greatest influence on the coefficient of effective use of powder material. By changing it, the surfacing performance can be increased by 10–15 %.\",\"PeriodicalId\":502919,\"journal\":{\"name\":\"Metal Working and Material Science\",\"volume\":\"7 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal Working and Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17212/1994-6309-2024-26.2-57-70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Working and Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1994-6309-2024-26.2-57-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effect of laser surfacing modes on the geometrical characteristics of the single laser tracks
Introduction. Laser surfacing is one of the leading trends in the field of additive technologies, which consists in layer-by-layer build of material using a laser as an energy source. To obtain a high-quality product, it is necessary to select the optimal building parameters correctly. The problem is that such optimization is necessary for all equipment, since minor differences in its characteristics can make significant changes in the parameters of layer-by-layer build. In order to determine the optimal build mode, it is enough to analyze the effect of various equipment parameters on the characteristics of single tracks. Therefore, the purpose of this work is to determine the most important parameters of laser radiation that affect the surfacing process and the optimal mode for building a single track of chromium-nickel steel. The work investigated single tracks obtained by laser surfacing of powder from austenitic chromium-nickel steel AISI 316L. The optimization factors included such characteristics as laser power, beam speed, flow rate of supplied powder and laser spot size. The wavelength of laser radiation was 1.07 μm. Research methods. To determine the quality and geometric dimensions of single tracks, the macrostructure of cross sections of specimens was studied using metallography and scanning electron microscopy methods. Results and discussion. It is established that the optimal mode for growing single tracks of steel AISI 316L is characterized by a laser radiation power of 1,250 W and a scanning speed of 25 mm/s. In this case, the optimal powder consumption rate is 12 g/min, and the laser spot size is 4.1 mm. The work shows that the powder consumption and laser spot size have the greatest influence on the coefficient of effective use of powder material. By changing it, the surfacing performance can be increased by 10–15 %.