Thermal stability of extruded Mg-Y-Nd alloy structure

A. Eroshenko, E. Legostaeva, Ivan Glukhov, P. Uvarkin, A. Tolmachev, Yurii P. Sharkeev
{"title":"Thermal stability of extruded Mg-Y-Nd alloy structure","authors":"A. Eroshenko, E. Legostaeva, Ivan Glukhov, P. Uvarkin, A. Tolmachev, Yurii P. Sharkeev","doi":"10.17212/1994-6309-2024-26.2-174-185","DOIUrl":null,"url":null,"abstract":"Introduction. Today, bioresorbable magnesium alloys possessing the required physical, mechanical, corrosion, and biological properties, are promising materials for orthopedic and cardiovascular surgery. The addition of rare earth elements such as yttrium, neodymium, and cerium to magnesium alloys improves its properties. Compared to widely used titanium alloys, magnesium alloys have a number of advantages. Bioresorbable materials slowly dissolve in the body, and recurrent operation to remove the implant is not needed. Biocompatible magnesium alloys have a fairly low elastic modulus (10 to 40 GPa), approaching to that of cortical bone, that reduces the contact stress in the bone-implant system. At the same time, strength properties of magnesium alloys alloyed with rare earth elements do not always meet the requirements for medical applications. Severe plastic deformation, for example, equal channel angular pressing, torsion under quasi-hydrostatic pressure, uniaxial forging, extrusion, is therefore very promising technique to gain the high level of mechanical properties of metals and alloys. Severe plastic deformation of magnesium alloys improves its structural strength by 2.5 times due to the generation of an ultrafine-grained and/or fine-grained structure. The issues related to the study of heat resistance, structure and phase composition of magnesium alloys with appropriate strength are relevant. Purpose of the work is to determine the influence of thermal effects on the microstructure of the extruded Mg-Y-Nd alloy. Methodology. The extruded Mg-2.9Y-1.3Nd alloy (95.0 wt. % Mg, 2.9 wt. % Y, 1.3 wt. % Nd,  0.2 wt. % Fe,  0 wt. % Al) is investigated in this paper. The thermal stability of the alloy microstructure is studied after annealing at 100, 300, 350, 450 and 525 °С in argon for one hour. The microstructure and phase composition are investigated using optical, transmission and scanning electron microscopes and analyzed on an X-ray diffractometer. Results and discussion. The extruded Mg-2.9Y-1.3Nd alloy has the bimodal fine-grained microstructure. It is found that along with the stable α-Mg phase, the alloy structure consists of Mg24Y5 intermetallic particles and -, -, and 1-phase precipitates. Annealing in the temperature range of 100–450 °С for one hour has no effect on the structure of the Mg-2.9Y-1.3Nd alloy, but promotes the growth in the linear dimensions of -, -, and 1-phases precipitates. In the temperature range of 300–450 °С, the morphology of -, ,- and 1-phases changes, while the average grain size of the major -phase remains unchanged. Annealing at 525 °С leads to a notable transformation of the bimodal microstructure of the alloy, which is associated with the intensive growth in the grain size of the -phase, Mg24Y5 particles, and -, -, and 1-phases precipitates. Annealing in the temperature range of 100–450 °C leads to an increase in the linear dimensions of Mg24Y5 particles, -, -, and 1-phases precipitates and bimodal microstructure of the Mg-2.9Y-1.3Nd alloy remains unchanged.","PeriodicalId":502919,"journal":{"name":"Metal Working and Material Science","volume":" 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Working and Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1994-6309-2024-26.2-174-185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction. Today, bioresorbable magnesium alloys possessing the required physical, mechanical, corrosion, and biological properties, are promising materials for orthopedic and cardiovascular surgery. The addition of rare earth elements such as yttrium, neodymium, and cerium to magnesium alloys improves its properties. Compared to widely used titanium alloys, magnesium alloys have a number of advantages. Bioresorbable materials slowly dissolve in the body, and recurrent operation to remove the implant is not needed. Biocompatible magnesium alloys have a fairly low elastic modulus (10 to 40 GPa), approaching to that of cortical bone, that reduces the contact stress in the bone-implant system. At the same time, strength properties of magnesium alloys alloyed with rare earth elements do not always meet the requirements for medical applications. Severe plastic deformation, for example, equal channel angular pressing, torsion under quasi-hydrostatic pressure, uniaxial forging, extrusion, is therefore very promising technique to gain the high level of mechanical properties of metals and alloys. Severe plastic deformation of magnesium alloys improves its structural strength by 2.5 times due to the generation of an ultrafine-grained and/or fine-grained structure. The issues related to the study of heat resistance, structure and phase composition of magnesium alloys with appropriate strength are relevant. Purpose of the work is to determine the influence of thermal effects on the microstructure of the extruded Mg-Y-Nd alloy. Methodology. The extruded Mg-2.9Y-1.3Nd alloy (95.0 wt. % Mg, 2.9 wt. % Y, 1.3 wt. % Nd,  0.2 wt. % Fe,  0 wt. % Al) is investigated in this paper. The thermal stability of the alloy microstructure is studied after annealing at 100, 300, 350, 450 and 525 °С in argon for one hour. The microstructure and phase composition are investigated using optical, transmission and scanning electron microscopes and analyzed on an X-ray diffractometer. Results and discussion. The extruded Mg-2.9Y-1.3Nd alloy has the bimodal fine-grained microstructure. It is found that along with the stable α-Mg phase, the alloy structure consists of Mg24Y5 intermetallic particles and -, -, and 1-phase precipitates. Annealing in the temperature range of 100–450 °С for one hour has no effect on the structure of the Mg-2.9Y-1.3Nd alloy, but promotes the growth in the linear dimensions of -, -, and 1-phases precipitates. In the temperature range of 300–450 °С, the morphology of -, ,- and 1-phases changes, while the average grain size of the major -phase remains unchanged. Annealing at 525 °С leads to a notable transformation of the bimodal microstructure of the alloy, which is associated with the intensive growth in the grain size of the -phase, Mg24Y5 particles, and -, -, and 1-phases precipitates. Annealing in the temperature range of 100–450 °C leads to an increase in the linear dimensions of Mg24Y5 particles, -, -, and 1-phases precipitates and bimodal microstructure of the Mg-2.9Y-1.3Nd alloy remains unchanged.
挤压 Mg-Y-Nd 合金结构的热稳定性
导言。如今,具有所需的物理、机械、腐蚀和生物特性的生物可吸收镁合金已成为整形外科和心血管外科手术的理想材料。在镁合金中添加稀土元素(如钇、钕和铈)可提高其性能。与广泛使用的钛合金相比,镁合金具有许多优点。生物可吸收材料会在体内缓慢溶解,因此不需要反复进行手术来取出植入物。生物相容性镁合金具有相当低的弹性模量(10 到 40 GPa),接近皮质骨的弹性模量,可降低骨-植入物系统中的接触应力。同时,稀土元素合金镁合金的强度特性并不总能满足医疗应用的要求。因此,严重塑性变形,例如等通道角压、准静水压力下的扭转、单轴锻造、挤压,是获得金属和合金高水平机械性能的非常有前途的技术。镁合金的严重塑性变形可使其结构强度提高 2.5 倍,这是因为产生了超细晶粒和/或细晶结构。与研究具有适当强度的镁合金的耐热性、结构和相组成有关的问题是相关的。这项工作的目的是确定热效应对挤压 Mg-Y-Nd 合金微观结构的影响。研究方法。本文研究了挤压 Mg-2.9Y-1.3Nd 合金(95.0 wt. % Mg、2.9 wt. % Y、1.3 wt. % Nd、 0.2 wt. % Fe、 0 wt. % Al)。在氩气中分别于 100、300、350、450 和 525 °С 下退火一小时后,研究了合金微观结构的热稳定性。使用光学显微镜、透射电子显微镜和扫描电子显微镜对微观结构和相组成进行了研究,并使用 X 射线衍射仪进行了分析。结果与讨论挤压出的 Mg-2.9Y-1.3Nd 合金具有双峰细粒微观结构。研究发现,除了稳定的 α-Mg 相之外,合金结构还包括 Mg24Y5 金属间化合物颗粒和 -、- 和 1- 相沉淀物。在 100-450 °С 温度范围内退火一小时对 Mg-2.9Y-1.3Nd 合金的结构没有影响,但会促进 -、- 和 1- 相沉淀的线性尺寸增长。在 300-450 °С 温度范围内,-、,- 和 1- 相的形态发生了变化,而主要的 - 相的平均晶粒大小保持不变。在 525 °С 温度下退火会导致合金的双峰微观结构发生显著变化,这与  相、Mg24Y5 颗粒以及 -、 和 1 相沉淀物的晶粒尺寸大幅增长有关。在 100-450 °C 的温度范围内退火会导致 Mg24Y5 颗粒、-、- 和 1- 相沉淀物的线性尺寸增大,而 Mg-2.9Y-1.3Nd 合金的双峰微观结构保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信