Inverse Problems and Imaging最新文献

筛选
英文 中文
Reconstructing a potential perturbation of the biharmonic operator on transversally anisotropic manifolds 在横向各向异性流形上重构双调和算子的势扰动
IF 1.3 4区 数学
Inverse Problems and Imaging Pub Date : 2021-09-16 DOI: 10.3934/ipi.2022034
Lili Yan
{"title":"Reconstructing a potential perturbation of the biharmonic operator on transversally anisotropic manifolds","authors":"Lili Yan","doi":"10.3934/ipi.2022034","DOIUrl":"https://doi.org/10.3934/ipi.2022034","url":null,"abstract":"<p style='text-indent:20px;'>We prove that a continuous potential <inline-formula><tex-math id=\"M1\">begin{document}$ q $end{document}</tex-math></inline-formula> can be constructively determined from the knowledge of the Dirichlet–to–Neumann map for the perturbed biharmonic operator <inline-formula><tex-math id=\"M2\">begin{document}$ Delta_g^2+q $end{document}</tex-math></inline-formula> on a conformally transversally anisotropic Riemannian manifold of dimension <inline-formula><tex-math id=\"M3\">begin{document}$ ge 3 $end{document}</tex-math></inline-formula> with boundary, assuming that the geodesic ray transform on the transversal manifold is constructively invertible. This is a constructive counterpart of the uniqueness result of [<xref ref-type=\"bibr\" rid=\"b56\">56</xref>]. In particular, our result is applicable and new in the case of smooth bounded domains in the <inline-formula><tex-math id=\"M4\">begin{document}$ 3 $end{document}</tex-math></inline-formula>–dimensional Euclidean space as well as in the case of <inline-formula><tex-math id=\"M5\">begin{document}$ 3 $end{document}</tex-math></inline-formula>–dimensional admissible manifolds.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46048137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Direct sampling methods for isotropic and anisotropic scatterers with point source measurements 点源测量各向同性和各向异性散射体的直接采样方法
IF 1.3 4区 数学
Inverse Problems and Imaging Pub Date : 2021-07-16 DOI: 10.3934/ipi.2022015
I. Harris, Dinh-Liem Nguyen, Thi-Phong Nguyen
{"title":"Direct sampling methods for isotropic and anisotropic scatterers with point source measurements","authors":"I. Harris, Dinh-Liem Nguyen, Thi-Phong Nguyen","doi":"10.3934/ipi.2022015","DOIUrl":"https://doi.org/10.3934/ipi.2022015","url":null,"abstract":"In this paper, we consider the inverse scattering problem for recovering either an isotropic or anisotropic scatterer from the measured scattered field initiated by a point source. We propose two new imaging functionals for solving the inverse problem. The first one employs a 'far-field' transform to the data which we then use to derive and provide an explicit decay rate for the imaging functional. In order to analyze the behavior of this imaging functional we use the factorization of the near field operator as well as the Funk-Hecke integral identity. For the second imaging functional the Cauchy data is used to define the functional and its behavior is analyzed using the Green's identities. Numerical experiments are given in two dimensions for both isotropic and anisotropic scatterers.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48281174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Well-posedness of an inverse problem for two- and three-dimensional convective Brinkman-Forchheimer equations with the final overdetermination 具有最终超定项的二维和三维对流Brinkman-Forchheimer方程反问题的适定性
IF 1.3 4区 数学
Inverse Problems and Imaging Pub Date : 2021-07-08 DOI: 10.3934/ipi.2022024
Pardeep Kumar, M. T. Mohan
{"title":"Well-posedness of an inverse problem for two- and three-dimensional convective Brinkman-Forchheimer equations with the final overdetermination","authors":"Pardeep Kumar, M. T. Mohan","doi":"10.3934/ipi.2022024","DOIUrl":"https://doi.org/10.3934/ipi.2022024","url":null,"abstract":"<p style='text-indent:20px;'>In this article, we study an inverse problem for the following convective Brinkman-Forchheimer (CBF) equations:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> begin{document}$ begin{align*} boldsymbol{u}_t-mu Deltaboldsymbol{u}+(boldsymbol{u}cdotnabla)boldsymbol{u}+alphaboldsymbol{u}+beta|boldsymbol{u}|^{r-1}boldsymbol{u}+nabla p = boldsymbol{F}: = boldsymbol{f} g, nablacdotboldsymbol{u} = 0, end{align*} $end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in bounded domains <inline-formula><tex-math id=\"M1\">begin{document}$ Omegasubsetmathbb{R}^d $end{document}</tex-math></inline-formula> (<inline-formula><tex-math id=\"M2\">begin{document}$ d = 2, 3 $end{document}</tex-math></inline-formula>) with smooth boundary, where <inline-formula><tex-math id=\"M3\">begin{document}$ alpha, beta, mu>0 $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M4\">begin{document}$ rin[1, infty) $end{document}</tex-math></inline-formula>. The CBF equations describe the motion of incompressible fluid flows in a saturated porous medium. The inverse problem under our consideration consists of reconstructing the vector-valued velocity function <inline-formula><tex-math id=\"M5\">begin{document}$ boldsymbol{u} $end{document}</tex-math></inline-formula>, the pressure gradient <inline-formula><tex-math id=\"M6\">begin{document}$ nabla p $end{document}</tex-math></inline-formula> and the vector-valued function <inline-formula><tex-math id=\"M7\">begin{document}$ boldsymbol{f} $end{document}</tex-math></inline-formula>. We prove the well-posedness result (existence, uniqueness and stability) of an inverse problem for 2D and 3D CBF equations with the final overdetermination condition using Schauder's fixed point theorem for arbitrary smooth initial data. The well-posedness results hold for <inline-formula><tex-math id=\"M8\">begin{document}$ rgeq 1 $end{document}</tex-math></inline-formula> in two dimensions and for <inline-formula><tex-math id=\"M9\">begin{document}$ r geq 3 $end{document}</tex-math></inline-formula> in three dimensions. The global solvability results available in the literature helped us to obtain the uniqueness and stability results for the model with fast growing nonlinearities.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45361120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas 对称张量场的Sobolev空间上的射线变换I:高阶Reshetnyak公式
IF 1.3 4区 数学
Inverse Problems and Imaging Pub Date : 2021-06-22 DOI: 10.3934/ipi.2021076
Venky Krishnan, V. Sharafutdinov
{"title":"Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas","authors":"Venky Krishnan, V. Sharafutdinov","doi":"10.3934/ipi.2021076","DOIUrl":"https://doi.org/10.3934/ipi.2021076","url":null,"abstract":"<p style='text-indent:20px;'>For an integer <inline-formula><tex-math id=\"M1\">begin{document}$ rge0 $end{document}</tex-math></inline-formula>, we prove the <inline-formula><tex-math id=\"M2\">begin{document}$ r^{mathrm{th}} $end{document}</tex-math></inline-formula> order Reshetnyak formula for the ray transform of rank <inline-formula><tex-math id=\"M3\">begin{document}$ m $end{document}</tex-math></inline-formula> symmetric tensor fields on <inline-formula><tex-math id=\"M4\">begin{document}$ {{mathbb R}}^n $end{document}</tex-math></inline-formula>. Roughly speaking, for a tensor field <inline-formula><tex-math id=\"M5\">begin{document}$ f $end{document}</tex-math></inline-formula>, the order <inline-formula><tex-math id=\"M6\">begin{document}$ r $end{document}</tex-math></inline-formula> refers to <inline-formula><tex-math id=\"M7\">begin{document}$ L^2 $end{document}</tex-math></inline-formula>-integrability of higher order derivatives of the Fourier transform <inline-formula><tex-math id=\"M8\">begin{document}$ widehat f $end{document}</tex-math></inline-formula> over spheres centered at the origin. Certain differential operators <inline-formula><tex-math id=\"M9\">begin{document}$ A^{(m,r,l)} (0le lle r) $end{document}</tex-math></inline-formula> on the sphere <inline-formula><tex-math id=\"M10\">begin{document}$ {{mathbb S}}^{n-1} $end{document}</tex-math></inline-formula> are main ingredients of the formula. The operators are defined by an algorithm that can be applied for any <inline-formula><tex-math id=\"M11\">begin{document}$ r $end{document}</tex-math></inline-formula> although the volume of calculations grows fast with <inline-formula><tex-math id=\"M12\">begin{document}$ r $end{document}</tex-math></inline-formula>. The algorithm is realized for small values of <inline-formula><tex-math id=\"M13\">begin{document}$ r $end{document}</tex-math></inline-formula> and Reshetnyak formulas of orders <inline-formula><tex-math id=\"M14\">begin{document}$ 0,1,2 $end{document}</tex-math></inline-formula> are presented in an explicit form.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"51 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86152836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Direct regularized reconstruction for the three-dimensional Calderón problem 三维Calderón问题的直接正则化重构
IF 1.3 4区 数学
Inverse Problems and Imaging Pub Date : 2021-06-15 DOI: 10.3934/ipi.2022002
K. Knudsen, A. K. Rasmussen
{"title":"Direct regularized reconstruction for the three-dimensional Calderón problem","authors":"K. Knudsen, A. K. Rasmussen","doi":"10.3934/ipi.2022002","DOIUrl":"https://doi.org/10.3934/ipi.2022002","url":null,"abstract":"Electrical Impedance Tomography gives rise to the severely ill-posed Calderón problem of determining the electrical conductivity distribution in a bounded domain from knowledge of the associated Dirichlet-to-Neumann map for the governing equation. The uniqueness and stability questions for the three-dimensional problem were largely answered in the affirmative in the 1980's using complex geometrical optics solutions, and this led further to a direct reconstruction method relying on a non-physical scattering transform. In this paper, the reconstruction problem is taken one step further towards practical applications by considering data contaminated by noise. Indeed, a regularization strategy for the three-dimensional Calderón problem is presented based on a suitable and explicit truncation of the scattering transform. This gives a certified, stable and direct reconstruction method that is robust to small perturbations of the data. Numerical tests on simulated noisy data illustrate the feasibility and regularizing effect of the method, and suggest that the numerical implementation performs better than predicted by theory.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"29 3 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83387648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An inverse problem for a fractional diffusion equation with fractional power type nonlinearities 一类具有分数阶幂型非线性的分数阶扩散方程的反问题
IF 1.3 4区 数学
Inverse Problems and Imaging Pub Date : 2021-03-31 DOI: 10.3934/ipi.2021064
Li Li
{"title":"An inverse problem for a fractional diffusion equation with fractional power type nonlinearities","authors":"Li Li","doi":"10.3934/ipi.2021064","DOIUrl":"https://doi.org/10.3934/ipi.2021064","url":null,"abstract":"We study the well-posedness of a semi-linear fractional diffusion equation and formulate an associated inverse problem. We determine fractional power type nonlinearities from the exterior partial measurements of the Dirichlet-to-Neumann map. Our arguments are based on a first order linearization as well as the parabolic Runge approximation property.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"18 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88082760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
On new surface-localized transmission eigenmodes 关于新的表面局域传输特征模
IF 1.3 4区 数学
Inverse Problems and Imaging Pub Date : 2021-03-15 DOI: 10.3934/ipi.2021063
Youjun Deng, Yan Jiang, Hongyu Liu, Kai Zhang
{"title":"On new surface-localized transmission eigenmodes","authors":"Youjun Deng, Yan Jiang, Hongyu Liu, Kai Zhang","doi":"10.3934/ipi.2021063","DOIUrl":"https://doi.org/10.3934/ipi.2021063","url":null,"abstract":"<p style='text-indent:20px;'>Consider the transmission eigenvalue problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> begin{document}$ (Delta+k^2mathbf{n}^2) w = 0, (Delta+k^2)v = 0 mbox{in} Omega;quad w = v, partial_nu w = partial_nu v mbox{on} partialOmega. $end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>It is shown in [<xref ref-type=\"bibr\" rid=\"b16\">16</xref>] that there exists a sequence of eigenfunctions <inline-formula><tex-math id=\"M1\">begin{document}$ (w_m, v_m)_{minmathbb{N}} $end{document}</tex-math></inline-formula> associated with <inline-formula><tex-math id=\"M2\">begin{document}$ k_mrightarrow infty $end{document}</tex-math></inline-formula> such that either <inline-formula><tex-math id=\"M3\">begin{document}$ {w_m}_{minmathbb{N}} $end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M4\">begin{document}$ {v_m}_{minmathbb{N}} $end{document}</tex-math></inline-formula> are surface-localized, depending on <inline-formula><tex-math id=\"M5\">begin{document}$ mathbf{n}>1 $end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M6\">begin{document}$ 0<mathbf{n}<1 $end{document}</tex-math></inline-formula>. In this paper, we discover a new type of surface-localized transmission eigenmodes by constructing a sequence of transmission eigenfunctions <inline-formula><tex-math id=\"M7\">begin{document}$ (w_m, v_m)_{minmathbb{N}} $end{document}</tex-math></inline-formula> associated with <inline-formula><tex-math id=\"M8\">begin{document}$ k_mrightarrow infty $end{document}</tex-math></inline-formula> such that both <inline-formula><tex-math id=\"M9\">begin{document}$ {w_m}_{minmathbb{N}} $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M10\">begin{document}$ {v_m}_{minmathbb{N}} $end{document}</tex-math></inline-formula> are surface-localized, no matter <inline-formula><tex-math id=\"M11\">begin{document}$ mathbf{n}>1 $end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M12\">begin{document}$ 0<mathbf{n}<1 $end{document}</tex-math></inline-formula>. Though our study is confined within the radial geometry, the construction is subtle and technical.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"6 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89807226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Simultaneous uniqueness for multiple parameters identification in a fractional diffusion-wave equation 分数阶扩散波动方程多参数辨识的同时唯一性
IF 1.3 4区 数学
Inverse Problems and Imaging Pub Date : 2021-03-13 DOI: 10.3934/ipi.2022019
X. Jing, Masahiro Yamamoto
{"title":"Simultaneous uniqueness for multiple parameters identification in a fractional diffusion-wave equation","authors":"X. Jing, Masahiro Yamamoto","doi":"10.3934/ipi.2022019","DOIUrl":"https://doi.org/10.3934/ipi.2022019","url":null,"abstract":"<p style='text-indent:20px;'>We consider two kinds of inverse problems on determining multiple parameters simultaneously for one-dimensional time-fractional diffusion-wave equations with derivative order <inline-formula><tex-math id=\"M1\">begin{document}$ alpha in (0, 2) $end{document}</tex-math></inline-formula>. Based on the analysis of the poles of Laplace transformed data and a transformation formula, we first prove the uniqueness in identifying multiple parameters, including the order of the derivative in time, a spatially varying potential, initial values, and Robin coefficients simultaneously from boundary measurement data, provided that no eigenmodes are zero. Our main results show that the uniqueness of four kinds of parameters holds simultaneously by such observation for the time-fractional diffusion-wave model where unknown orders <inline-formula><tex-math id=\"M2\">begin{document}$ alpha $end{document}</tex-math></inline-formula> vary order (0, 2) including 1, restricted to neither <inline-formula><tex-math id=\"M3\">begin{document}$ alpha in (0, 1] $end{document}</tex-math></inline-formula> nor <inline-formula><tex-math id=\"M4\">begin{document}$ alpha in (1, 2) $end{document}</tex-math></inline-formula>. Furthermore, for another formulation of the fractional diffusion-wave equation with input source term in place of the initial value, we can also prove the simultaneous uniqueness of multiple parameters, including a spatially varying potential and Robin coefficients by means of the uniqueness result in the case of non-zero initial value and Duhamel's principle.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49002422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Random tree Besov priors – Towards fractal imaging 随机树贝索夫先验-走向分形成像
IF 1.3 4区 数学
Inverse Problems and Imaging Pub Date : 2021-02-28 DOI: 10.3934/ipi.2022059
Hanne Kekkonen, M. Lassas, E. Saksman, S. Siltanen
{"title":"Random tree Besov priors – Towards fractal imaging","authors":"Hanne Kekkonen, M. Lassas, E. Saksman, S. Siltanen","doi":"10.3934/ipi.2022059","DOIUrl":"https://doi.org/10.3934/ipi.2022059","url":null,"abstract":"We propose alternatives to Bayesian a priori distributions that are frequently used in the study of inverse problems. Our aim is to construct priors that have similar good edge-preserving properties as total variation or Mumford-Shah priors but correspond to well defined infinite-dimensional random variables, and can be approximated by finite-dimensional random variables. We introduce a new wavelet-based model, where the non zero coefficient are chosen in a systematic way so that prior draws have certain fractal behaviour. We show that realisations of this new prior take values in some Besov spaces and have singularities only on a small set τ that has a certain Hausdorff dimension. We also introduce an efficient algorithm for calculating the MAP estimator, arising from the the new prior, in denoising problem.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42250381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Counterexamples to inverse problems for the wave equation 波动方程反问题的反例
IF 1.3 4区 数学
Inverse Problems and Imaging Pub Date : 2021-01-26 DOI: 10.3934/ipi.2021058
Tony Liimatainen, L. Oksanen
{"title":"Counterexamples to inverse problems for the wave equation","authors":"Tony Liimatainen, L. Oksanen","doi":"10.3934/ipi.2021058","DOIUrl":"https://doi.org/10.3934/ipi.2021058","url":null,"abstract":"<p style='text-indent:20px;'>We construct counterexamples to inverse problems for the wave operator on domains in <inline-formula><tex-math id=\"M1\">begin{document}$ mathbb{R}^{n+1} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M2\">begin{document}$ n ge 2 $end{document}</tex-math></inline-formula>, and on Lorentzian manifolds. We show that non-isometric Lorentzian metrics can lead to same partial data measurements, which are formulated in terms certain restrictions of the Dirichlet-to-Neumann map. The Lorentzian metrics giving counterexamples are time-dependent, but they are smooth and non-degenerate. On <inline-formula><tex-math id=\"M3\">begin{document}$ mathbb{R}^{n+1} $end{document}</tex-math></inline-formula> the metrics are conformal to the Minkowski metric.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"69 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90580032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信