{"title":"A nonlocal low rank model for poisson noise removal","authors":"Mingchao Zhao, Y. Wen, Michael K. Ng, Hongwei Li","doi":"10.3934/ipi.2021003","DOIUrl":null,"url":null,"abstract":"Patch-based methods, which take the advantage of the redundancy and similarity among image patches, have attracted much attention in recent years. However, these methods are mainly limited to Gaussian noise removal. In this paper, the Poisson noise removal problem is considered. Unlike Gaussian noise which has an identical and independent distribution, Poisson noise is signal dependent, which makes the problem more challenging. By incorporating the prior that a group of similar patches should possess a low-rank structure, and applying the maximum a posterior (MAP) estimation, the Poisson noise removal problem is formulated as an optimization one. Then, an alternating minimization algorithm is developed to find the minimizer of the objective function efficiently. Convergence of the minimizing sequence will be established, and the efficiency and effectiveness of the proposed algorithm will be demonstrated by numerical experiments.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"4 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2021003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7
Abstract
Patch-based methods, which take the advantage of the redundancy and similarity among image patches, have attracted much attention in recent years. However, these methods are mainly limited to Gaussian noise removal. In this paper, the Poisson noise removal problem is considered. Unlike Gaussian noise which has an identical and independent distribution, Poisson noise is signal dependent, which makes the problem more challenging. By incorporating the prior that a group of similar patches should possess a low-rank structure, and applying the maximum a posterior (MAP) estimation, the Poisson noise removal problem is formulated as an optimization one. Then, an alternating minimization algorithm is developed to find the minimizer of the objective function efficiently. Convergence of the minimizing sequence will be established, and the efficiency and effectiveness of the proposed algorithm will be demonstrated by numerical experiments.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.