{"title":"Fourier method for reconstructing elastic body force from the coupled-wave field","authors":"Xianchao Wang, Jiaqi Zhu, Minghui Song, Wei Wu","doi":"10.3934/ipi.2021052","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the inverse source problem of the time-harmonic elastic waves. A novel non-iterative reconstruction scheme is proposed for determining the elastic body force by using the multi-frequency Fourier expansion. The key ingredient of the approach is to choose appropriate admissible frequencies and establish an relationship between the Fourier coefficients and the coupled-wave field of compressional wave and shear wave. Both theoretical justifications and numerical examples are presented to verify the validity and robustness of the proposed method.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2021052","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
This paper is concerned with the inverse source problem of the time-harmonic elastic waves. A novel non-iterative reconstruction scheme is proposed for determining the elastic body force by using the multi-frequency Fourier expansion. The key ingredient of the approach is to choose appropriate admissible frequencies and establish an relationship between the Fourier coefficients and the coupled-wave field of compressional wave and shear wave. Both theoretical justifications and numerical examples are presented to verify the validity and robustness of the proposed method.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.