{"title":"Performance Evaluation of Self-Compacting Glass Fiber Concrete Incorporating Silica Fume at Elevated Temperatures","authors":"H. Sultan, Abbas A. Abd Noor, G. F. Huseien","doi":"10.3390/eng5020057","DOIUrl":"https://doi.org/10.3390/eng5020057","url":null,"abstract":"In this work, the properties of self-compacting concrete (SCC) and SCC containing 0.5 and 1% glass fibers (with lengths of 6 and 13 mm) were experimentally investigated, as well as their performance at high temperatures. With a heating rate of 5 °C/min, high-temperature experiments were conducted at 200, 400, 600, and 800 °C to examine mass loss, spalling, and the remaining mechanical properties of SCC with and without glass fibers. According to the results of the flowability and passing ability tests, adding glass fibers does not affect how workable and self-compacting SCCs were. These findings also demonstrated that the mechanical properties of samples with and without glass fibers rose up to 200 °C but then decreased at 400 °C, whereas the mixture containing 0.5% glass fibers of a length of 13 mm displayed better mechanical properties. Both SCC samples with and without glass fibers remained intact at 200 °C. Some SCC samples displayed some corner and edge spalling when the temperature reached about 400 °C. Above 400 °C, a significant number of microcracks started to form. SCC samples quickly spalled and were completely destroyed between 600 and 800 °C. According to the results, glass fibers cannot stop SCC from spalling during a fire. Between 200 and 400 °C, there was no discernible mass loss. At 600 °C, mass loss starts to accelerate quickly, and it increased more than ten times beyond 200 °C. The ultrasonic pulse velocity (UPV) of SCC samples with glass fibers increased between room temperature and 200 °C, and the mixture containing 0.5% glass fibers of a length of 13 mm showed a somewhat higher UPV than other SCC mixtures until it started to decline at about 400 °C.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"41 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141275979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Houssam Affan, Badreddine El Haddaji, S. Ajouguim, Fouzia Khadraoui
{"title":"A Review—Durability, Mechanical and Hygrothermal Behavior of Building Materials Incorporating Biomass","authors":"Houssam Affan, Badreddine El Haddaji, S. Ajouguim, Fouzia Khadraoui","doi":"10.3390/eng5020055","DOIUrl":"https://doi.org/10.3390/eng5020055","url":null,"abstract":"The growing importance of environmental efficiency in reducing carbon emissions has prompted scientists around the world to intensify their efforts to prevent the destructive effects of a changing climate and a warming planet. Global carbon emissions rose by more than 40% in 2021, leading to significant variations in the planet’s weather patterns. Nevertheless, a significant proportion of natural resources continue to be exploited. To prepare for this challenge, it is essential to implement a sustainable approach in the construction industry. Biobased materials are made primarily from renewable raw materials like hemp, straw, miscanthus, and jute. These new materials provide excellent thermal and acoustic performance and make optimum use of local natural resources such as agricultural waste. Nowadays, cement is one of the most important construction materials. In an attempt to meet this exciting challenge, biobased materials with low-carbon binders are one of the proposed solutions to create a more insulating and less polluting material. The aim of this review is to investigate and to analyze the impact of the incorporation of different types of biobased materials on the mechanical, thermal, and hygric performance of a mix using different types of binder.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"43 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141280142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Malte Jakschik, Felix Endemann, Patrick Adler, Lennart Lamers, Bernd Kuhlenkötter
{"title":"Assessing the Suitability of Automation Using the Methods–Time–Measurement Basic System","authors":"Malte Jakschik, Felix Endemann, Patrick Adler, Lennart Lamers, Bernd Kuhlenkötter","doi":"10.3390/eng5020053","DOIUrl":"https://doi.org/10.3390/eng5020053","url":null,"abstract":"Due to its high complexity and the varied assembly processes, hybrid assembly systems characterized by human–robot collaboration (HRC) are meaningful. Suitable use cases must be identified efficiently to ensure cost-effectiveness and successful deployment in the respective assembly systems. This paper presents a method for evaluating the potential of HRC to derive automation suitability based on existing or to-be-collected time data. This should enable a quick and favorable statement to be made about processes, for efficient application in potential analyses. The method is based on the Methods–Time–Measurement Basic System (MTM-1) procedure, widely used in the industry. This ensures good adaptability in an industrial context. It extends existing models and examines how much assembly activities and processes can be optimized by efficiently allocating between humans and robots. In the process model, the assembly processes are subdivided and analyzed with the help of the specified MTM motion time system. The suitability of the individual activities and sub-processes for automation are evaluated based on criteria derived from existing methods. Two four-field matrices were used to interpret and classify the analysis results. The process is assessed using an example product from electrolyzer production, which is currently mainly assembled by hand. To achieve high statement reliability, further work is required to classify the results comprehensively.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Smitha Mol Selvanose, S. Marimuthu, Abdul Waheed Awan, Kamran Daniel
{"title":"NACA 2412 Drag Reduction Using V-Shaped Riblets","authors":"Smitha Mol Selvanose, S. Marimuthu, Abdul Waheed Awan, Kamran Daniel","doi":"10.3390/eng5020051","DOIUrl":"https://doi.org/10.3390/eng5020051","url":null,"abstract":"This research focuses on addressing a significant concern in the aviation industry, which is drag. The primary objective of this project is to achieve drag reduction through the implementation of riblets on a wing featuring the NACA 2412 aerofoil, operating at subsonic speeds. Riblets, with the flow direction on wing surfaces, have demonstrated the potential to effectively decrease drag in diverse applications. This investigation includes computational analysis within the ANSYS Workbench framework, employing a polyhedral mesh model. The scope of this research encompasses the analysis of both a conventional wing and a modified wing with riblets. A comparative analysis is conducted to assess variations in drag values between the two configurations. Parameters, including geometry, dimensions, and riblet placement at varying angles of attack, are explored to comprehend their impact on drag reduction. Notably, 15.6% and 23% reductions in drag were identified at a 16-degree angle of attack with midspan and three-riblet models, separately. The computational mesh and method were validated using appropriate techniques.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"41 45","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141103424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innovative Integration of Triboelectric Nanogenerators into Signature Stamps for Energy Harvesting, Self-Powered Electronic Devices, and Smart Applications","authors":"Lakshakoti Bochu, Supraja Potu, Madathil Navaneeth, Uday Kumar Khanapuram, Rakesh Kumar Rajaboina, Prakash Kodali","doi":"10.3390/eng5020052","DOIUrl":"https://doi.org/10.3390/eng5020052","url":null,"abstract":"In this manuscript, we present a novel approach for integrating Triboelectric Nanogenerators (TENGs) into signature stamps, termed Stamp TENG (S-TENG). We have modified a commercially available stamp holder to integrate triboelectric layers for multiple applications like effective energy harvesting, sensing, and embedded electronics for data prediction. S-TENG has been further explored in remote monitoring systems for elderly individuals and for gathering real-time statistics regarding persons or events at specific locations. The S-TENG is fabricated using FEP and Al as functional layers. It demonstrates an output voltage of 310 V, a current of 165 μA, and a power density of 14.8 W/m2. The simplicity of the S-TENG’s design is noteworthy. Its ability to generate energy through simple, repetitive stamping actions, which anyone can perform without specialized training, stands out as a key feature. The device is also designed for ease of use, being handheld and user-friendly. Its flexible and adaptable structure ensures that individuals with varying physical capabilities can comfortably operate it. An impressive capability of the TENG is its ability to illuminate 320 LEDs with each stamp press momentarily. Furthermore, using energy management circuits, the S-TENG can power small electronic gadgets such as digital watches and thermometers for a few seconds. In addition, when integrated with electronics, the S-TENG shows great potential in data prediction for various practical applications.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"56 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141103001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Bensemlali, B. Hatimi, Asmae Sanad, L. El Gaini, M. Joudi, N. Labjar, H. Nasrellah, A. Aarfane, Mina Bakasse
{"title":"Novel Synthesis of Nanocalcite from Phosphogypsum and Cesium Carbonate: Control and Optimization of Particle Size","authors":"M. Bensemlali, B. Hatimi, Asmae Sanad, L. El Gaini, M. Joudi, N. Labjar, H. Nasrellah, A. Aarfane, Mina Bakasse","doi":"10.3390/eng5020050","DOIUrl":"https://doi.org/10.3390/eng5020050","url":null,"abstract":"This study investigates a controlled synthesis and particle size optimization of nanocalcite particles using phosphogypsum, a waste byproduct from the phosphate fertilizer industry, and cesium carbonate (Cs2CO3), a common carbonate source. The effects of synthesis parameters, including temperature and pH, on the size, morphology, and crystallinity of the synthesized nanocalcite particles were systematically examined. The optimized synthesis conditions for obtaining nanocalcite particles with desired properties are discussed. The synthesized nanocalcite particles were characterized using various techniques, such as XRD, FTIR, and SEM, to analyze their crystal structure, morphology, and elemental composition. Particle sizes were determined using the Debye–Scherrer method, and accordingly, nanometric sizes were achieved. The potential applications of the synthesized nanocalcite particles in cementitious materials, agriculture, and drug delivery are highlighted. This research provides valuable insights into the sustainable synthesis and size optimization of nanocalcite particles from phosphogypsum and Cs2CO3 at a controlled temperature and pH.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"62 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Efficient Approach for Damage Identification of Beams Using Mid-Span Static Deflection Changes","authors":"Quoc-Bao Nguyen, Huu-Hue Nguyen","doi":"10.3390/eng5020048","DOIUrl":"https://doi.org/10.3390/eng5020048","url":null,"abstract":"In structural health monitoring, determining the location and index of damage is a critical task in order to ensure the safe operation of the construction project and to enable the early recovery of losses. This paper presents a novel method for identifying damage location and damage index in simply supported (SS) beams by analyzing deflection changes at the mid-span point. Theoretical equations for mid-span deflection of simply supported beams with local damage are derived based on the principle of Virtual Work. Utilizing mid-span deflection, formulas for deflection change (DC) between two structural states, along with the first and second derivatives of DC at the mid-span point, are developed. The method of determining the location and damage index is then extended from intact beams to cases of beams with multiple damage zones and from damaged beams to beams with new failures. The graphical analysis of these quantities facilitates the determination of the number, location, and index of new damages. Various case studies on simply supported beams, involving one, two, and four damage zones at different positions and with varying damage indexes, are examined. The comparison of the theoretical method with the numerical simulations using Midas FEA NX 2020 (v1.1) software yields consistent results, affirming the accuracy and efficacy of the proposed approach in identifying and determining the damage locations as well as the damage indices.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"14 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Bikas, Dimitrios Manitaras, Thanassis Souflas, Panagiotis Stavropoulos
{"title":"Process-Driven Layout Optimization of a Portable Hybrid Manufacturing Robotic Cell Structure","authors":"H. Bikas, Dimitrios Manitaras, Thanassis Souflas, Panagiotis Stavropoulos","doi":"10.3390/eng5020049","DOIUrl":"https://doi.org/10.3390/eng5020049","url":null,"abstract":"Hybrid manufacturing combines manufacturing processes (typically additive manufacturing and machining) exploiting the benefits of each and enabling repair scenarios. Such an approach can be integrated with a robot, and if made portable, can form a flexible machine tool that can be easily transported anywhere to enable repairs in the field. However, the design of the load-bearing structure determines its transportability, and its stiffness plays a crucial functional role under dynamic loads and affects the product quality. Finding the right balance between weight and stiffness requires accurate boundary conditions and an effective design. In this work, a method is proposed towards process-driven optimization of a portable manufacturing cell structure. The dynamic cutting forces are determined through a machining process model and, via a simplified model of the robot arm, the forces at the base of the robot are estimated. Since the frame consists of beams, the layout optimization method is applied, using the estimated process forces as boundary conditions to optimize the arrangement of beams. The proposed method achieved 0.05 mm displacement in the load-bearing structure under milling and an acceptable accuracy of the position of a hole’s center during drilling, while the overall weight reduced by 17.6%.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"99 39","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olivier Pantalé, Sharan Raj Rangasamy Mahendren, O. Dalverny
{"title":"Comparative Analysis of Finite Element Formulations for Simulating Hot Forming of Ti-6Al-4V Aerospace Components","authors":"Olivier Pantalé, Sharan Raj Rangasamy Mahendren, O. Dalverny","doi":"10.3390/eng5020047","DOIUrl":"https://doi.org/10.3390/eng5020047","url":null,"abstract":"This study presents a comprehensive finite element analysis to compare the performance of different element formulations (classic shell elements, solid elements, and continuum shell elements) in simulating the hot-forming process at 725 °C of a complex Ti-6Al-4V aerospace component with an initial blank thickness of 1.6 mm (0.063 inches). The Ti-6Al-4V blank is modeled as a deformable body exhibiting anisotropic plastic behavior, whereas the forming tools (matrix and punch) are assumed to be rigid bodies. The simulation accounts for temperature and strain rate effects on the material properties, incorporating phenomena such as friction and anisotropy. Three different element types are studied and compared: S4R and S4 (classic shells), C3D8R and C3D8 (solids), and SC8R (continuum shell with reduced integration). Finally, the model is validated by comparing the predicted final part geometry, especially the thickness distribution, against the experimental measurements. The model can also predict the springback effect on the final geometry. The SC8R continuum shell element provides the smoothest representation of thickness variations along critical regions of the final part. The study highlights the importance of selecting the appropriate element type for the accurate simulation of hot-forming processes involving large deformations and complex contact conditions. The ability of continuum shell elements to accurately capture the thickness variations makes them an ideal candidate for such applications.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"109 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140986085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inertial Propulsion Devices: A Review","authors":"C. Provatidis","doi":"10.3390/eng5020046","DOIUrl":"https://doi.org/10.3390/eng5020046","url":null,"abstract":"Google Scholar produces about 278 hits for the term “inertial propulsion”. If patents are also included, the number of hits increases to 536. This paper discusses, in a critical way, some characteristic aspects of this controversial topic. The review starts with the halteres of athletes in the Olympic games of ancient times and then continues with some typical devices which have been developed and/or patented from the second quarter of the twentieth century to the present day.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"109 49","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140985634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}