Journal of Applied Probability最新文献

筛选
英文 中文
Sharp large deviations and concentration inequalities for the number of descents in a random permutation 随机排列中下降数的锐大偏差和集中不等式
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-01-05 DOI: 10.1017/jpr.2023.86
Bernard Bercu, Michel Bonnefont, Adrien Richou
{"title":"Sharp large deviations and concentration inequalities for the number of descents in a random permutation","authors":"Bernard Bercu, Michel Bonnefont, Adrien Richou","doi":"10.1017/jpr.2023.86","DOIUrl":"https://doi.org/10.1017/jpr.2023.86","url":null,"abstract":"<p>The goal of this paper is to go further in the analysis of the behavior of the number of descents in a random permutation. Via two different approaches relying on a suitable martingale decomposition or on the Irwin–Hall distribution, we prove that the number of descents satisfies a sharp large-deviation principle. A very precise concentration inequality involving the rate function in the large-deviation principle is also provided.</p>","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"25 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139103556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Kolmogorov constant explicit form in the theory of discrete-time stochastic branching systems 论离散时间随机分支系统理论中的柯尔莫哥洛夫常数显式
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-01-04 DOI: 10.1017/jpr.2023.85
Azam A. Imomov, Misliddin S. Murtazaev
{"title":"On the Kolmogorov constant explicit form in the theory of discrete-time stochastic branching systems","authors":"Azam A. Imomov, Misliddin S. Murtazaev","doi":"10.1017/jpr.2023.85","DOIUrl":"https://doi.org/10.1017/jpr.2023.85","url":null,"abstract":"<p>We consider a discrete-time population growth system called the Bienaymé–Galton–Watson stochastic branching system. We deal with a noncritical case, in which the per capita offspring mean <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240103141917319-0909:S0021900223000852:S0021900223000852_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mneq1$</span></span></img></span></span>. The famous Kolmogorov theorem asserts that the expectation of the population size in the subcritical case <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240103141917319-0909:S0021900223000852:S0021900223000852_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$m&lt;1$</span></span></img></span></span> on positive trajectories of the system asymptotically stabilizes and approaches <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240103141917319-0909:S0021900223000852:S0021900223000852_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${1}/mathcal{K}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240103141917319-0909:S0021900223000852:S0021900223000852_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal{K}$</span></span></img></span></span> is called the Kolmogorov constant. The paper is devoted to the search for an explicit expression of this constant depending on the structural parameters of the system. Our argumentation is essentially based on the basic lemma describing the asymptotic expansion of the probability-generating function of the number of individuals. We state this lemma for the noncritical case. Subsequently, we find an extended analogue of the Kolmogorov constant in the noncritical case. An important role in our discussion is also played by the asymptotic properties of transition probabilities of the Q-process and their convergence to invariant measures. Obtaining the explicit form of the extended Kolmogorov constant, we refine several limit theorems of the theory of noncritical branching systems, showing explicit leading terms in the asymptotic expansions.</p>","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"35 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weak convergence of the extremes of branching Lévy processes with regularly varying tails 具有规则变化尾的分支lsamvy过程的极端的弱收敛性
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2023-12-06 DOI: 10.1017/jpr.2023.103
Yan-xia Ren, Renming Song, Rui Zhang
{"title":"Weak convergence of the extremes of branching Lévy processes with regularly varying tails","authors":"Yan-xia Ren, Renming Song, Rui Zhang","doi":"10.1017/jpr.2023.103","DOIUrl":"https://doi.org/10.1017/jpr.2023.103","url":null,"abstract":"We study the weak convergence of the extremes of supercritical branching Lévy processes <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900223001031_inline1.png\" /> <jats:tex-math> ${mathbb{X}_t, t ge0}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose spatial motions are Lévy processes with regularly varying tails. The result is drastically different from the case of branching Brownian motions. We prove that, when properly renormalized, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900223001031_inline2.png\" /> <jats:tex-math> $mathbb{X}_t$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> converges weakly. As a consequence, we obtain a limit theorem for the order statistics of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900223001031_inline3.png\" /> <jats:tex-math> $mathbb{X}_t$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"11 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138524156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Speed of extinction for continuous-state branching processes in a weakly subcritical Lévy environment 弱亚临界lims环境下连续状态分支过程的消光速度
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2023-12-01 DOI: 10.1017/jpr.2023.92
Natalia Cardona-Tobón, Juan Carlos Pardo
{"title":"Speed of extinction for continuous-state branching processes in a weakly subcritical Lévy environment","authors":"Natalia Cardona-Tobón, Juan Carlos Pardo","doi":"10.1017/jpr.2023.92","DOIUrl":"https://doi.org/10.1017/jpr.2023.92","url":null,"abstract":"We continue with the systematic study of the speed of extinction of continuous-state branching processes in Lévy environments under more general branching mechanisms. Here, we deal with the weakly subcritical regime under the assumption that the branching mechanism is regularly varying. We extend recent results of Li and Xu (2018) and Palau et al. (2016), where it is assumed that the branching mechanism is stable, and complement the recent articles of Bansaye et al. (2021) and Cardona-Tobón and Pardo (2021), where the critical and the strongly and intermediate subcritical cases were treated, respectively. Our methodology combines a path analysis of the branching process together with its Lévy environment, fluctuation theory for Lévy processes, and the asymptotic behaviour of exponential functionals of Lévy processes. Our approach is inspired by the last two previously cited papers, and by Afanasyev et al. (2012), where the analogue was obtained.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"24 4","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138524155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
JPR volume 60 issue 4 Cover and Front matter JPR 第 60 卷第 4 期 封面和封底
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2023-12-01 DOI: 10.1017/jpr.2023.55
{"title":"JPR volume 60 issue 4 Cover and Front matter","authors":"","doi":"10.1017/jpr.2023.55","DOIUrl":"https://doi.org/10.1017/jpr.2023.55","url":null,"abstract":"","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"121 2","pages":"f1 - f2"},"PeriodicalIF":1.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139012773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JPR volume 60 issue 4 Cover and Back matter JPR 第 60 卷第 4 期封面和封底
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2023-12-01 DOI: 10.1017/jpr.2023.56
{"title":"JPR volume 60 issue 4 Cover and Back matter","authors":"","doi":"10.1017/jpr.2023.56","DOIUrl":"https://doi.org/10.1017/jpr.2023.56","url":null,"abstract":"","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"124 ","pages":"b1 - b2"},"PeriodicalIF":1.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138988690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Daryl John Daley, 4 April 1939 – 16 April 2023 An internationally acclaimed researcher in applied probability and a gentleman of great kindness 达里尔-约翰-戴利,1939 年 4 月 4 日 - 2023 年 4 月 16 日 他是国际知名的应用概率研究员,也是一位非常和蔼可亲的绅士。
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2023-12-01 DOI: 10.1017/jpr.2023.90
Peter G. Taylor
{"title":"Daryl John Daley, 4 April 1939 – 16 April 2023 An internationally acclaimed researcher in applied probability and a gentleman of great kindness","authors":"Peter G. Taylor","doi":"10.1017/jpr.2023.90","DOIUrl":"https://doi.org/10.1017/jpr.2023.90","url":null,"abstract":"","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"271 2","pages":"1516 - 1531"},"PeriodicalIF":1.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139022048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local convergence of critical Galton–Watson trees 临界高尔顿-沃森树的局部收敛性
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2023-11-30 DOI: 10.1017/jpr.2023.83
Aymen Bouaziz
{"title":"Local convergence of critical Galton–Watson trees","authors":"Aymen Bouaziz","doi":"10.1017/jpr.2023.83","DOIUrl":"https://doi.org/10.1017/jpr.2023.83","url":null,"abstract":"We study the local convergence of critical Galton–Watson trees under various conditionings. We give a sufficient condition, which serves to cover all previous known results, for the convergence in distribution of a conditioned Galton–Watson tree to Kesten’s tree. We also propose a new proof to give the limit in distribution of a critical Galton–Watson tree, with finite support, conditioned on having a large width.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"27 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138524152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of information networks 信息网络动力学
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2023-11-30 DOI: 10.1017/jpr.2023.91
Andrei Sontag, Tim Rogers, Christian A Yates
{"title":"Dynamics of information networks","authors":"Andrei Sontag, Tim Rogers, Christian A Yates","doi":"10.1017/jpr.2023.91","DOIUrl":"https://doi.org/10.1017/jpr.2023.91","url":null,"abstract":"We explore a simple model of network dynamics which has previously been applied to the study of information flow in the context of epidemic spreading. A random rooted network is constructed that evolves according to the following rule: at a constant rate, pairs of nodes (<jats:italic>i</jats:italic>, <jats:italic>j</jats:italic>) are randomly chosen to interact, with an edge drawn from <jats:italic>i</jats:italic> to <jats:italic>j</jats:italic> (and any other out-edge from <jats:italic>i</jats:italic> deleted) if <jats:italic>j</jats:italic> is strictly closer to the root with respect to graph distance. We characterise the dynamics of this random network in the limit of large size, showing that it instantaneously forms a tree with long branches that immediately collapse to depth two, then it slowly rearranges itself to a star-like configuration. This curious behaviour has consequences for the study of the epidemic models in which this information network was first proposed.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"47 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138524207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of the switch process and geometric divisibility 开关过程的特点及几何可分性
4区 数学
Journal of Applied Probability Pub Date : 2023-11-06 DOI: 10.1017/jpr.2023.81
Henrik Bengtsson
{"title":"Characteristics of the switch process and geometric divisibility","authors":"Henrik Bengtsson","doi":"10.1017/jpr.2023.81","DOIUrl":"https://doi.org/10.1017/jpr.2023.81","url":null,"abstract":"Abstract The switch process alternates independently between 1 and $-1$ , with the first switch to 1 occurring at the origin. The expected value function of this process is defined uniquely by the distribution of switching times. The relation between the two is implicitly described through the Laplace transform, which is difficult to use for determining if a given function is the expected value function of some switch process. We derive an explicit relation under the assumption of monotonicity of the expected value function. It is shown that geometric divisible switching time distributions correspond to a non-negative decreasing expected value function. Moreover, an explicit relation between the expected value of a switch process and the autocovariance function of the switch process stationary counterpart is obtained, leading to a new interpretation of the classical Pólya criterion for positive-definiteness.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信