Characteristics of the switch process and geometric divisibility

Pub Date : 2023-11-06 DOI:10.1017/jpr.2023.81
Henrik Bengtsson
{"title":"Characteristics of the switch process and geometric divisibility","authors":"Henrik Bengtsson","doi":"10.1017/jpr.2023.81","DOIUrl":null,"url":null,"abstract":"Abstract The switch process alternates independently between 1 and $-1$ , with the first switch to 1 occurring at the origin. The expected value function of this process is defined uniquely by the distribution of switching times. The relation between the two is implicitly described through the Laplace transform, which is difficult to use for determining if a given function is the expected value function of some switch process. We derive an explicit relation under the assumption of monotonicity of the expected value function. It is shown that geometric divisible switching time distributions correspond to a non-negative decreasing expected value function. Moreover, an explicit relation between the expected value of a switch process and the autocovariance function of the switch process stationary counterpart is obtained, leading to a new interpretation of the classical Pólya criterion for positive-definiteness.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jpr.2023.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The switch process alternates independently between 1 and $-1$ , with the first switch to 1 occurring at the origin. The expected value function of this process is defined uniquely by the distribution of switching times. The relation between the two is implicitly described through the Laplace transform, which is difficult to use for determining if a given function is the expected value function of some switch process. We derive an explicit relation under the assumption of monotonicity of the expected value function. It is shown that geometric divisible switching time distributions correspond to a non-negative decreasing expected value function. Moreover, an explicit relation between the expected value of a switch process and the autocovariance function of the switch process stationary counterpart is obtained, leading to a new interpretation of the classical Pólya criterion for positive-definiteness.
分享
查看原文
开关过程的特点及几何可分性
切换过程在1和$-1$之间独立交替,第一次切换到1发生在原点。该过程的期望值函数由切换时间的分布唯一地定义。两者之间的关系是通过拉普拉斯变换来隐式描述的,很难用拉普拉斯变换来确定给定函数是否为某个转换过程的期望值函数。在期望值函数单调性的假设下,导出了一个显式关系。结果表明,几何可分的开关时间分布对应于一个非负递减的期望值函数。此外,得到了开关过程的期望值与开关过程平稳对应的自协方差函数之间的显式关系,从而对经典的Pólya正确定性判据进行了新的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信