Journal of Complexity最新文献

筛选
英文 中文
Bounds for the sampling discretization error and their applications to the universal sampling discretization 抽样离散误差的界限及其在通用抽样离散中的应用
IF 1.8 2区 数学
Journal of Complexity Pub Date : 2025-05-05 DOI: 10.1016/j.jco.2025.101958
E.D. Kosov , V.N. Temlyakov
{"title":"Bounds for the sampling discretization error and their applications to the universal sampling discretization","authors":"E.D. Kosov ,&nbsp;V.N. Temlyakov","doi":"10.1016/j.jco.2025.101958","DOIUrl":"10.1016/j.jco.2025.101958","url":null,"abstract":"<div><div>In the first part of the paper we study absolute error of sampling discretization of the integral <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norm for function classes of continuous functions. We use basic approaches from chaining technique to provide general upper bounds for the error of sampling discretization of the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norm on a given function class in terms of entropy numbers in the uniform norm of this class. As an example we apply these general results to obtain new error bounds for sampling discretization of the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norms on classes of multivariate functions with mixed smoothness. In the second part of the paper we apply our general bounds to study the problem of universal sampling discretization.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"90 ","pages":"Article 101958"},"PeriodicalIF":1.8,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143936949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Average case tractability of multivariate approximation with Gevrey type kernels Gevrey型核多元逼近的平均情况可跟踪性
IF 1.8 2区 数学
Journal of Complexity Pub Date : 2025-05-05 DOI: 10.1016/j.jco.2025.101957
Wanting Lu , Heping Wang
{"title":"Average case tractability of multivariate approximation with Gevrey type kernels","authors":"Wanting Lu ,&nbsp;Heping Wang","doi":"10.1016/j.jco.2025.101957","DOIUrl":"10.1016/j.jco.2025.101957","url":null,"abstract":"<div><div>We consider multivariate approximation problems in the average case setting with a zero mean Gaussian measure whose covariance kernel is a periodic Gevrey kernel. We investigate various notions of algebraic tractability and exponential tractability, and obtain necessary and sufficient conditions in terms of the parameters of the problem.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"90 ","pages":"Article 101957"},"PeriodicalIF":1.8,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143923221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tractability results for integration in subspaces of the Wiener algebra 维纳代数子空间积分的可溯性结果
IF 1.8 2区 数学
Journal of Complexity Pub Date : 2025-04-16 DOI: 10.1016/j.jco.2025.101948
Josef Dick , Takashi Goda , Kosuke Suzuki
{"title":"Tractability results for integration in subspaces of the Wiener algebra","authors":"Josef Dick ,&nbsp;Takashi Goda ,&nbsp;Kosuke Suzuki","doi":"10.1016/j.jco.2025.101948","DOIUrl":"10.1016/j.jco.2025.101948","url":null,"abstract":"<div><div>In this paper, we present some new (in-)tractability results related to the integration problem in subspaces of the Wiener algebra over the <em>d</em>-dimensional unit cube. We show that intractability holds for multivariate integration in the standard Wiener algebra in the deterministic setting, in contrast to polynomial tractability in an unweighted subspace of the Wiener algebra recently shown by Goda (2023). Moreover, we prove that multivariate integration in the subspace of the Wiener algebra introduced by Goda is strongly polynomially tractable if we switch to the randomized setting, where we obtain a better <em>ε</em>-exponent than the one implied by the standard Monte Carlo method. We also identify subspaces in which multivariate integration in the deterministic setting are (strongly) polynomially tractable and we compare these results with the bound which can be obtained via Hoeffding's inequality.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"90 ","pages":"Article 101948"},"PeriodicalIF":1.8,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143869597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Takashi Goda is the winner of the 2025 Joseph F. Traub Prize for Achievement in Information-Based Complexity 后田隆史是 2025 年约瑟夫-特劳布信息复杂性成就奖(Joseph F. Traub Prize for Achievement in Information-Based Complexity)的获得者。
IF 1.8 2区 数学
Journal of Complexity Pub Date : 2025-04-10 DOI: 10.1016/j.jco.2025.101947
Erich Novak
{"title":"Takashi Goda is the winner of the 2025 Joseph F. Traub Prize for Achievement in Information-Based Complexity","authors":"Erich Novak","doi":"10.1016/j.jco.2025.101947","DOIUrl":"10.1016/j.jco.2025.101947","url":null,"abstract":"","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"89 ","pages":"Article 101947"},"PeriodicalIF":1.8,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143817477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructions of normal numbers with infinite digit sets 具有无限位集的正常数的构造
IF 1.8 2区 数学
Journal of Complexity Pub Date : 2025-04-04 DOI: 10.1016/j.jco.2025.101945
Aafko Boonstra , Charlene Kalle
{"title":"Constructions of normal numbers with infinite digit sets","authors":"Aafko Boonstra ,&nbsp;Charlene Kalle","doi":"10.1016/j.jco.2025.101945","DOIUrl":"10.1016/j.jco.2025.101945","url":null,"abstract":"<div><div>Let <span><math><mi>L</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>d</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> be any ordered probability sequence, i.e., satisfying <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> for each <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>d</mi><mo>∈</mo><mi>N</mi></mrow></msub><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span>. We construct sequences <span><math><mi>A</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> on the countably infinite alphabet <span><math><mi>N</mi></math></span> in which each possible block of digits <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∈</mo><mi>N</mi></math></span>, <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>, occurs with frequency <span><math><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msub></math></span>. In other words, we construct <em>L</em>-normal sequences. These sequences can then be projected to normal numbers in various affine number systems, such as real numbers <span><math><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> that are normal in GLS number systems that correspond to the sequence <em>L</em> or higher dimensional variants. In particular, this construction provides a family of numbers that have a normal Lüroth expansion.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"89 ","pages":"Article 101945"},"PeriodicalIF":1.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143817478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multilevel Picard approximations overcome the curse of dimensionality in the numerical approximation of general semilinear PDEs with gradient-dependent nonlinearities 多阶皮卡德近似克服了一般非线性梯度半线性偏微分方程数值逼近的维数问题
IF 1.8 2区 数学
Journal of Complexity Pub Date : 2025-04-04 DOI: 10.1016/j.jco.2025.101946
Ariel Neufeld , Tuan Anh Nguyen , Sizhou Wu
{"title":"Multilevel Picard approximations overcome the curse of dimensionality in the numerical approximation of general semilinear PDEs with gradient-dependent nonlinearities","authors":"Ariel Neufeld ,&nbsp;Tuan Anh Nguyen ,&nbsp;Sizhou Wu","doi":"10.1016/j.jco.2025.101946","DOIUrl":"10.1016/j.jco.2025.101946","url":null,"abstract":"<div><div>Neufeld and Wu (2023) <span><span>[49]</span></span> developed a multilevel Picard (MLP) algorithm which can approximately solve <em>general</em> semilinear parabolic PDEs with gradient-dependent nonlinearities, allowing also for coefficient functions of the corresponding PDE to be non-constant. By introducing a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula and identifying the first and second component of the unique fixed-point of the SFPE with the unique viscosity solution of the PDE and its gradient, they proved convergence of their algorithm. However, it remained an open question whether the proposed MLP schema in Neufeld and Wu (2023) <span><span>[49]</span></span> does not suffer from the curse of dimensionality. In this paper, we prove that the MLP algorithm in Neufeld and Wu (2023) <span><span>[49]</span></span> indeed can overcome the curse of dimensionality, i.e. that its computational complexity only grows polynomially in the dimension <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span> and the reciprocal of the accuracy <em>ε</em>, under some suitable assumptions on the nonlinear part of the corresponding PDE.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"90 ","pages":"Article 101946"},"PeriodicalIF":1.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144070001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric conditional U-statistics on Lie groups with measurement errors 具有测量误差的李群的非参数条件u统计量
IF 1.8 2区 数学
Journal of Complexity Pub Date : 2025-03-31 DOI: 10.1016/j.jco.2025.101944
Salim Bouzebda, Nourelhouda Taachouche
{"title":"Nonparametric conditional U-statistics on Lie groups with measurement errors","authors":"Salim Bouzebda,&nbsp;Nourelhouda Taachouche","doi":"10.1016/j.jco.2025.101944","DOIUrl":"10.1016/j.jco.2025.101944","url":null,"abstract":"<div><div>This study presents a comprehensive framework for conditional <em>U</em>-statistics of a general order in the context of Lie group-valued predictors affected by measurement errors. Such situations arise in a variety of modern statistical problems. Our approach is grounded in an abstract harmonic analysis on Lie groups, a setting relatively underexplored in statistical research. In a unified study, we introduce an innovative deconvolution method for conditional <em>U</em>-statistics and investigate its convergence rate and asymptotic distribution for the first time. Furthermore, we explore the application of conditional <em>U</em>-statistics to variables that combine, in a nontrivial way, Euclidean and non-Euclidean elements subject to measurement errors, an area largely uncharted in statistical research. We derive general asymptotic properties, including convergence rates across various modes and the asymptotic distribution. All results are established under fairly general conditions on the underlying models. Additionally, our results are used to derive the asymptotic confidence intervals derived from the asymptotic distribution of the estimator. We also discuss applications of the general approximation results and give new insights into the Kendall rank correlation coefficient and discrimination problems.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"89 ","pages":"Article 101944"},"PeriodicalIF":1.8,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143768448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrability of weak mixed first-order derivatives and convergence rates of scrambled digital nets 弱混合一阶导数的可积性与乱置数字网络的收敛速度
IF 1.8 2区 数学
Journal of Complexity Pub Date : 2025-03-04 DOI: 10.1016/j.jco.2025.101935
Yang Liu
{"title":"Integrability of weak mixed first-order derivatives and convergence rates of scrambled digital nets","authors":"Yang Liu","doi":"10.1016/j.jco.2025.101935","DOIUrl":"10.1016/j.jco.2025.101935","url":null,"abstract":"<div><div>We consider the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> integrability of weak mixed first-order derivatives of the integrand and study convergence rates of scrambled digital nets. We show that the generalized Vitali variation with parameter <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span> from [Dick and Pillichshammer, 2010] is bounded above by the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norm of the weak mixed first-order derivative, where <span><math><mi>p</mi><mo>=</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mo>−</mo><mn>2</mn><mi>α</mi></mrow></mfrac></math></span>. Consequently, when the weak mixed first-order derivative belongs to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mn>2</mn></math></span>, the variance of the scrambled digital nets estimator convergences at a rate of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>4</mn><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>⁡</mo><mi>N</mi><mo>)</mo></math></span>. Numerical experiments further validate the theoretical results.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"89 ","pages":"Article 101935"},"PeriodicalIF":1.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted mesh algorithms for general Markov decision processes: Convergence and tractability 一般马尔可夫决策过程的加权网格算法:收敛性和可追溯性
IF 1.8 2区 数学
Journal of Complexity Pub Date : 2025-02-26 DOI: 10.1016/j.jco.2025.101932
Denis Belomestny , John Schoenmakers , Veronika Zorina
{"title":"Weighted mesh algorithms for general Markov decision processes: Convergence and tractability","authors":"Denis Belomestny ,&nbsp;John Schoenmakers ,&nbsp;Veronika Zorina","doi":"10.1016/j.jco.2025.101932","DOIUrl":"10.1016/j.jco.2025.101932","url":null,"abstract":"<div><div>We introduce a mesh-type approach for tackling discrete-time, finite-horizon Markov Decision Processes (MDPs) characterized by state and action spaces that are general, encompassing both finite and infinite (yet suitably regular) subsets of Euclidean space. In particular, for bounded state and action spaces, our algorithm achieves a computational complexity that is tractable in the sense of Novak &amp; Woźniakowski <span><span>[12]</span></span>, and is polynomial in the time horizon. For an unbounded state space the algorithm is “semi-tractable” in the sense that the complexity is proportional to <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mi>c</mi></mrow></msup></math></span> with some dimension independent <span><math><mi>c</mi><mo>≥</mo><mn>2</mn></math></span>, to achieve precision <em>ε</em>, and polynomial in the time horizon with linear degree in the underlying dimension. As such, the proposed approach has some flavor of the randomization method by Rust <span><span>[14]</span></span> which uses uniform sampling in compact state space. However, the present approach is essentially different due to the inhomogeneous finite horizon setting, which involves general transition distributions over a possibly non-compact state space. To demonstrate the effectiveness of our algorithm, we provide illustrations based on Linear-Quadratic Gaussian (LQG) control problems.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"88 ","pages":"Article 101932"},"PeriodicalIF":1.8,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143520997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factoring sparse polynomials fast 快速分解稀疏多项式
IF 1.8 2区 数学
Journal of Complexity Pub Date : 2025-02-25 DOI: 10.1016/j.jco.2025.101934
Alexander Demin , Joris van der Hoeven
{"title":"Factoring sparse polynomials fast","authors":"Alexander Demin ,&nbsp;Joris van der Hoeven","doi":"10.1016/j.jco.2025.101934","DOIUrl":"10.1016/j.jco.2025.101934","url":null,"abstract":"<div><div>Consider a sparse polynomial in several variables given explicitly as a sum of non-zero terms with coefficients in an effective field. In this paper, we present several algorithms for factoring such polynomials and related tasks (such as gcd computation, square-free factorization, content-free factorization, and root extraction). Our methods are all based on sparse interpolation, but follow two main lines of attack: iteration on the number of variables and more direct reductions to the univariate or bivariate case. We present detailed probabilistic complexity bounds in terms of the complexity of sparse interpolation and evaluation.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"88 ","pages":"Article 101934"},"PeriodicalIF":1.8,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信