{"title":"迭代随机函数的Rademacher学习率","authors":"Nikola Sandrić","doi":"10.1016/j.jco.2025.101971","DOIUrl":null,"url":null,"abstract":"<div><div>Most supervised learning methods assume training data is drawn from an i.i.d. sample. However, real-world problems often exhibit temporal dependence and strong correlations between marginals of the data-generating process, rendering the i.i.d. assumption unrealistic. Such cases naturally involve time-series processes and Markov chains. The learning rates typically obtained in these settings remain independent of the data distribution, potentially leading to restrictive hypothesis classes and suboptimal sample complexities. We consider training data generated by an iterated random function that need not be irreducible or aperiodic. Assuming the governing function is contractive in its first argument and subject to certain regularity conditions on the hypothesis class, we first establish uniform convergence for the sample error. We then prove learnability of approximate empirical risk minimization and derive its learning rate bound. Both bounds depend explicitly on the data distribution through the Rademacher complexities of the hypothesis class, thereby better capturing properties of the data-generating distribution.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"91 ","pages":"Article 101971"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rademacher learning rates for iterated random functions\",\"authors\":\"Nikola Sandrić\",\"doi\":\"10.1016/j.jco.2025.101971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most supervised learning methods assume training data is drawn from an i.i.d. sample. However, real-world problems often exhibit temporal dependence and strong correlations between marginals of the data-generating process, rendering the i.i.d. assumption unrealistic. Such cases naturally involve time-series processes and Markov chains. The learning rates typically obtained in these settings remain independent of the data distribution, potentially leading to restrictive hypothesis classes and suboptimal sample complexities. We consider training data generated by an iterated random function that need not be irreducible or aperiodic. Assuming the governing function is contractive in its first argument and subject to certain regularity conditions on the hypothesis class, we first establish uniform convergence for the sample error. We then prove learnability of approximate empirical risk minimization and derive its learning rate bound. Both bounds depend explicitly on the data distribution through the Rademacher complexities of the hypothesis class, thereby better capturing properties of the data-generating distribution.</div></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"91 \",\"pages\":\"Article 101971\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X25000494\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000494","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rademacher learning rates for iterated random functions
Most supervised learning methods assume training data is drawn from an i.i.d. sample. However, real-world problems often exhibit temporal dependence and strong correlations between marginals of the data-generating process, rendering the i.i.d. assumption unrealistic. Such cases naturally involve time-series processes and Markov chains. The learning rates typically obtained in these settings remain independent of the data distribution, potentially leading to restrictive hypothesis classes and suboptimal sample complexities. We consider training data generated by an iterated random function that need not be irreducible or aperiodic. Assuming the governing function is contractive in its first argument and subject to certain regularity conditions on the hypothesis class, we first establish uniform convergence for the sample error. We then prove learnability of approximate empirical risk minimization and derive its learning rate bound. Both bounds depend explicitly on the data distribution through the Rademacher complexities of the hypothesis class, thereby better capturing properties of the data-generating distribution.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.