基于状态的抛物型分布最优控制问题的时空有限元系统最优复杂性解

IF 1.8 2区 数学 Q1 MATHEMATICS
Richard Löscher, Michael Reichelt, Olaf Steinbach
{"title":"基于状态的抛物型分布最优控制问题的时空有限元系统最优复杂性解","authors":"Richard Löscher,&nbsp;Michael Reichelt,&nbsp;Olaf Steinbach","doi":"10.1016/j.jco.2025.101976","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider a distributed optimal control problem subject to a parabolic evolution equation as constraint. The approach presented here is based on the variational formulation of the parabolic evolution equation in anisotropic Sobolev spaces, considering the control in <span><math><msup><mrow><mo>[</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mo>,</mo><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo><mo>]</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Since the state equation defines an isomorphism from <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mn>0</mn><mo>,</mo></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> onto <span><math><msup><mrow><mo>[</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mo>,</mo><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo><mo>]</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, we can eliminate the control to end up with a minimization problem in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mn>0</mn><mo>,</mo></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> where the anisotropic Sobolev norm can be realized using a modified Hilbert transformation. In the unconstrained case, the minimizer is the unique solution of a singularly perturbed elliptic equation. In the case of a space-time tensor-product mesh, we can use sparse factorization techniques to construct a solver of almost linear complexity. Numerical examples also include additional state constraints, and a nonlinear state equation.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101976"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal complexity solution of space-time finite element systems for state-based parabolic distributed optimal control problems\",\"authors\":\"Richard Löscher,&nbsp;Michael Reichelt,&nbsp;Olaf Steinbach\",\"doi\":\"10.1016/j.jco.2025.101976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we consider a distributed optimal control problem subject to a parabolic evolution equation as constraint. The approach presented here is based on the variational formulation of the parabolic evolution equation in anisotropic Sobolev spaces, considering the control in <span><math><msup><mrow><mo>[</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mo>,</mo><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo><mo>]</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Since the state equation defines an isomorphism from <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mn>0</mn><mo>,</mo></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> onto <span><math><msup><mrow><mo>[</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mo>,</mo><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo><mo>]</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, we can eliminate the control to end up with a minimization problem in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mn>0</mn><mo>,</mo></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> where the anisotropic Sobolev norm can be realized using a modified Hilbert transformation. In the unconstrained case, the minimizer is the unique solution of a singularly perturbed elliptic equation. In the case of a space-time tensor-product mesh, we can use sparse factorization techniques to construct a solver of almost linear complexity. Numerical examples also include additional state constraints, and a nonlinear state equation.</div></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"92 \",\"pages\":\"Article 101976\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X25000548\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000548","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑一个以抛物型演化方程为约束的分布式最优控制问题。本文提出的方法是基于各向异性Sobolev空间中抛物演化方程的变分公式,考虑了[H0;,01,1/2(Q)]中的控制。由于状态方程定义了从H0;0,1,1/2(Q)到[H0;, 1,01,1(Q)]的同构,我们可以消除控制,最终得到H0;0,1,1/2(Q)的最小化问题,其中各向异性Sobolev范数可以使用修改的Hilbert变换来实现。在无约束情况下,最小解是奇摄动椭圆方程的唯一解。在时空张量积网格的情况下,我们可以使用稀疏分解技术来构造几乎线性复杂度的求解器。数值例子还包括附加状态约束和非线性状态方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal complexity solution of space-time finite element systems for state-based parabolic distributed optimal control problems
In this paper we consider a distributed optimal control problem subject to a parabolic evolution equation as constraint. The approach presented here is based on the variational formulation of the parabolic evolution equation in anisotropic Sobolev spaces, considering the control in [H0;,01,1/2(Q)]. Since the state equation defines an isomorphism from H0;0,1,1/2(Q) onto [H0;,01,1(Q)], we can eliminate the control to end up with a minimization problem in H0;0,1,1/2(Q) where the anisotropic Sobolev norm can be realized using a modified Hilbert transformation. In the unconstrained case, the minimizer is the unique solution of a singularly perturbed elliptic equation. In the case of a space-time tensor-product mesh, we can use sparse factorization techniques to construct a solver of almost linear complexity. Numerical examples also include additional state constraints, and a nonlinear state equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信