{"title":"基于状态的抛物型分布最优控制问题的时空有限元系统最优复杂性解","authors":"Richard Löscher, Michael Reichelt, Olaf Steinbach","doi":"10.1016/j.jco.2025.101976","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider a distributed optimal control problem subject to a parabolic evolution equation as constraint. The approach presented here is based on the variational formulation of the parabolic evolution equation in anisotropic Sobolev spaces, considering the control in <span><math><msup><mrow><mo>[</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mo>,</mo><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo><mo>]</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Since the state equation defines an isomorphism from <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mn>0</mn><mo>,</mo></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> onto <span><math><msup><mrow><mo>[</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mo>,</mo><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo><mo>]</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, we can eliminate the control to end up with a minimization problem in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mn>0</mn><mo>,</mo></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> where the anisotropic Sobolev norm can be realized using a modified Hilbert transformation. In the unconstrained case, the minimizer is the unique solution of a singularly perturbed elliptic equation. In the case of a space-time tensor-product mesh, we can use sparse factorization techniques to construct a solver of almost linear complexity. Numerical examples also include additional state constraints, and a nonlinear state equation.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101976"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal complexity solution of space-time finite element systems for state-based parabolic distributed optimal control problems\",\"authors\":\"Richard Löscher, Michael Reichelt, Olaf Steinbach\",\"doi\":\"10.1016/j.jco.2025.101976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we consider a distributed optimal control problem subject to a parabolic evolution equation as constraint. The approach presented here is based on the variational formulation of the parabolic evolution equation in anisotropic Sobolev spaces, considering the control in <span><math><msup><mrow><mo>[</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mo>,</mo><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo><mo>]</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Since the state equation defines an isomorphism from <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mn>0</mn><mo>,</mo></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> onto <span><math><msup><mrow><mo>[</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mo>,</mo><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo><mo>]</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, we can eliminate the control to end up with a minimization problem in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mo>;</mo><mn>0</mn><mo>,</mo></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> where the anisotropic Sobolev norm can be realized using a modified Hilbert transformation. In the unconstrained case, the minimizer is the unique solution of a singularly perturbed elliptic equation. In the case of a space-time tensor-product mesh, we can use sparse factorization techniques to construct a solver of almost linear complexity. Numerical examples also include additional state constraints, and a nonlinear state equation.</div></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"92 \",\"pages\":\"Article 101976\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X25000548\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000548","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Optimal complexity solution of space-time finite element systems for state-based parabolic distributed optimal control problems
In this paper we consider a distributed optimal control problem subject to a parabolic evolution equation as constraint. The approach presented here is based on the variational formulation of the parabolic evolution equation in anisotropic Sobolev spaces, considering the control in . Since the state equation defines an isomorphism from onto , we can eliminate the control to end up with a minimization problem in where the anisotropic Sobolev norm can be realized using a modified Hilbert transformation. In the unconstrained case, the minimizer is the unique solution of a singularly perturbed elliptic equation. In the case of a space-time tensor-product mesh, we can use sparse factorization techniques to construct a solver of almost linear complexity. Numerical examples also include additional state constraints, and a nonlinear state equation.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.