无复盖族的点集最小色散的下界

IF 1.8 2区 数学 Q1 MATHEMATICS
M. Trödler , J. Volec , J. Vybíral
{"title":"无复盖族的点集最小色散的下界","authors":"M. Trödler ,&nbsp;J. Volec ,&nbsp;J. Vybíral","doi":"10.1016/j.jco.2025.101974","DOIUrl":null,"url":null,"abstract":"<div><div>We elaborate on the intimate connection between the largest volume of an empty axis-parallel box in a set of <em>n</em> points from <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> and cover-free families from the extremal set theory. This connection was discovered in a recent paper of the authors. In this work, we apply a very recent result of Michel and Scott to obtain a whole range of new lower bounds on the number of points needed so that the largest volume of such a box is bounded by a given <em>ε</em>. Surprisingly, it turns out that for each of the new bounds, there is a choice of the parameters <em>d</em> and <em>ε</em> such that the bound outperforms the others.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"91 ","pages":"Article 101974"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower bounds on the minimal dispersion of point sets via cover-free families\",\"authors\":\"M. Trödler ,&nbsp;J. Volec ,&nbsp;J. Vybíral\",\"doi\":\"10.1016/j.jco.2025.101974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We elaborate on the intimate connection between the largest volume of an empty axis-parallel box in a set of <em>n</em> points from <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> and cover-free families from the extremal set theory. This connection was discovered in a recent paper of the authors. In this work, we apply a very recent result of Michel and Scott to obtain a whole range of new lower bounds on the number of points needed so that the largest volume of such a box is bounded by a given <em>ε</em>. Surprisingly, it turns out that for each of the new bounds, there is a choice of the parameters <em>d</em> and <em>ε</em> such that the bound outperforms the others.</div></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"91 \",\"pages\":\"Article 101974\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X25000524\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000524","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

从[0,1]d中讨论了n个点的集合中空轴平行盒的最大体积与极值集合论中的无盖族之间的密切联系。这种联系是在作者最近的一篇论文中发现的。在这项工作中,我们应用Michel和Scott最近的结果来获得所需点数的整个范围的新下界,从而使这样一个盒子的最大体积由给定的ε限定。令人惊讶的是,对于每一个新的边界,都有一个参数d和ε的选择,使得这个边界优于其他边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bounds on the minimal dispersion of point sets via cover-free families
We elaborate on the intimate connection between the largest volume of an empty axis-parallel box in a set of n points from [0,1]d and cover-free families from the extremal set theory. This connection was discovered in a recent paper of the authors. In this work, we apply a very recent result of Michel and Scott to obtain a whole range of new lower bounds on the number of points needed so that the largest volume of such a box is bounded by a given ε. Surprisingly, it turns out that for each of the new bounds, there is a choice of the parameters d and ε such that the bound outperforms the others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信