Journal of Experimental & Clinical Cancer Research最新文献

筛选
英文 中文
Multibiomarker panels in liquid biopsy for early detection of pancreatic cancer - a comprehensive review. 液体活检中用于胰腺癌早期检测的多生物标记物面板--全面综述。
IF 11.4 1区 医学
Journal of Experimental & Clinical Cancer Research Pub Date : 2024-09-02 DOI: 10.1186/s13046-024-03166-w
Kim-Lea Reese, Klaus Pantel, Daniel J Smit
{"title":"Multibiomarker panels in liquid biopsy for early detection of pancreatic cancer - a comprehensive review.","authors":"Kim-Lea Reese, Klaus Pantel, Daniel J Smit","doi":"10.1186/s13046-024-03166-w","DOIUrl":"10.1186/s13046-024-03166-w","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is frequently detected in late stages, which leads to limited therapeutic options and a dismal overall survival rate. To date, no robust method for the detection of early-stage PDAC that can be used for targeted screening approaches is available. Liquid biopsy allows the minimally invasive collection of body fluids (typically peripheral blood) and the subsequent analysis of circulating tumor cells or tumor-associated molecules such as nucleic acids, proteins, or metabolites that may be useful for the early diagnosis of PDAC. Single biomarkers may lack sensitivity and/or specificity to reliably detect PDAC, while combinations of these circulating biomarkers in multimarker panels may improve the sensitivity and specificity of blood test-based diagnosis. In this narrative review, we present an overview of different liquid biopsy biomarkers for the early diagnosis of PDAC and discuss the validity of multimarker panels.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel engineered IL-2 Nemvaleukin alfa combined with PD1 checkpoint blockade enhances the systemic anti-tumor responses of radiation therapy. 新型工程IL-2 Nemvaleukin alfa与PD1检查点阻断相结合,可增强放疗的全身抗肿瘤反应。
IF 11.4 1区 医学
Journal of Experimental & Clinical Cancer Research Pub Date : 2024-09-02 DOI: 10.1186/s13046-024-03165-x
Kewen He, Nahum Puebla-Osorio, Hampartsoum B Barsoumian, Duygu Sezen, Zahid Rafiq, Thomas S Riad, Yun Hu, Ailing Huang, Tiffany A Voss, Claudia S Kettlun Leyton, Lily Jae Schuda, Ethan Hsu, Joshua Heiber, Maria-Angelica Cortez, James W Welsh
{"title":"Novel engineered IL-2 Nemvaleukin alfa combined with PD1 checkpoint blockade enhances the systemic anti-tumor responses of radiation therapy.","authors":"Kewen He, Nahum Puebla-Osorio, Hampartsoum B Barsoumian, Duygu Sezen, Zahid Rafiq, Thomas S Riad, Yun Hu, Ailing Huang, Tiffany A Voss, Claudia S Kettlun Leyton, Lily Jae Schuda, Ethan Hsu, Joshua Heiber, Maria-Angelica Cortez, James W Welsh","doi":"10.1186/s13046-024-03165-x","DOIUrl":"10.1186/s13046-024-03165-x","url":null,"abstract":"<p><strong>Background: </strong>Combining interleukin-2 (IL-2) with radiotherapy (RT) and immune checkpoint blockade (ICB) has emerged as a promising approach to address ICB resistance. However, conventional IL-2 cytokine therapy faces constraints owing to its brief half-life and adverse effects. RDB 1462, the mouse ortholog of Nemvaleukin alfa, is an engineered IL-2 with an intermediate affinity that selectively stimulates antitumor CD8 T and NK cells while limiting regulatory T cell expansion. This study aimed to evaluate the antitumor activity and mechanism of action of the combination of RDB 1462, RT, and anti-PD1 in mouse tumor models.</p><p><strong>Methods: </strong>Two bilateral lung adenocarcinoma murine models were established using 344SQ-Parental and 344SQ anti-PD1-resistant cell lines. Primary tumors were treated with RT, and secondary tumors were observed for evidence of abscopal effects. We performed immune phenotyping by flow cytometry, analyzed 770 immune-related genes using NanoString, and performed T cell receptor (TCR) repertoire analysis. Serum pro-inflammatory cytokine markers were analyzed by 23-plex kit.</p><p><strong>Results: </strong>Compared to native IL-2 (RDB 1475), RDB 1462 demonstrated superior systemic antitumoral responses, attributable, at least in part, to augmented levels of CD4 and CD8 T cells with the latter. Our findings reveal substantial reductions in primary and secondary tumor volumes compared to monotherapy controls, with some variability observed among different dosing schedules of RDB 1462 combined with RT. Blood and tumor tissue-based flow cytometric phenotyping reveals an increase in effector memory CD8 and CD4 T cells and a decrease in immunosuppressive cells accompanied by a significant increase in IL-2, IFN-γ, and GM-CSF levels in the combination group. Transcriptomic profiling and TCR sequencing reveal favorable gene expression and T cell repertoire patterns with the dual combination. Furthermore, integrating anti-PD1 therapy with RT and RDB 1462 further reduced primary and secondary tumor volumes, prolonged survival, and decreased lung metastasis. Observations of immune cell profiles indicated that RT with escalating doses of RDB 1462 significantly reduced tumor growth and increased tumor-specific immune cell populations.</p><p><strong>Conclusion: </strong>The addition of Nemvaleukin therapy may enhance responses to RT alone and in combination with anti-PD1.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USP36 promotes tumorigenesis and tamoxifen resistance in breast cancer by deubiquitinating and stabilizing ERα. USP36 通过去泛素化和稳定 ERα 促进乳腺癌的肿瘤发生和他莫昔芬抗性。
IF 11.4 1区 医学
Journal of Experimental & Clinical Cancer Research Pub Date : 2024-08-31 DOI: 10.1186/s13046-024-03160-2
Ting Zhuang, Shuqing Zhang, Dongyi Liu, Zhongbo Li, Xin Li, Jiaoyan Li, Penghe Yang, Chenmiao Zhang, Jiayao Cui, Mingxi Fu, Fangyu Shen, Lei Yuan, Zhao Zhang, Peng Su, Jian Zhu, Huijie Yang
{"title":"USP36 promotes tumorigenesis and tamoxifen resistance in breast cancer by deubiquitinating and stabilizing ERα.","authors":"Ting Zhuang, Shuqing Zhang, Dongyi Liu, Zhongbo Li, Xin Li, Jiaoyan Li, Penghe Yang, Chenmiao Zhang, Jiayao Cui, Mingxi Fu, Fangyu Shen, Lei Yuan, Zhao Zhang, Peng Su, Jian Zhu, Huijie Yang","doi":"10.1186/s13046-024-03160-2","DOIUrl":"10.1186/s13046-024-03160-2","url":null,"abstract":"<p><strong>Background: </strong>Breast cancer is the most prevalent cancer in women globally. Over-activated estrogen receptor (ER) α signaling is considered the main factor in luminal breast cancers, which can be effectively managed with selective estrogen receptor modulators (SERMs) like tamoxifen. However, approximately 30-40% of ER + breast cancer cases are recurrent after tamoxifen therapy. This implies that the treatment of breast cancer is still hindered by resistance to tamoxifen. Recent studies have suggested that post-translational modifications of ERα play a significant role in endocrine resistance. The stability of both ERα protein and its transcriptome is regulated by a balance between E3 ubiquitin ligases and deubiquitinases. According to the current knowledge, approximately 100 deubiquitinases are encoded in the human genome, but it remains unclear which deubiquitinases play a critical role in estrogen signaling and endocrine resistance. Thus, decoding the key deubiquitinases that significantly impact estrogen signaling, including the control of ERα expression and stability, is critical for the improvement of breast cancer therapeutics.</p><p><strong>Methods: </strong>We used several ER positive breast cancer cell lines, DUB siRNA library screening, xenograft models, endocrine-resistant (ERα-Y537S) model and performed immunoblotting, real time PCR, RNA sequencing, immunofluorescence, and luciferase activity assay to investigate the function of USP36 in breast cancer progression and tamoxifen resistance.</p><p><strong>Results: </strong>In this study, we identify Ubiquitin-specific peptidase 36 (USP36) as a key deubiquitinase involved in ERα signaling and the advancement of breast cancer by deubiquitinases siRNA library screening. In vitro and in vivo studies showed that USP36, but not its catalytically inactive mutant (C131A), could promote breast cancer progression through ERα signaling. Conversely, silencing USP36 inhibited tumorigenesis. In models resistant to endocrine therapy, silencing USP36 destabilized the resistant form of ERα (Y537S) and restored sensitivity to tamoxifen. Molecular studies indicated that USP36 inhibited K48-linked polyubiquitination of ERα and enhanced the ERα transcriptome. It is interesting to note that our results suggest USP36 as a novel biomarker for treatment of breast cancer.</p><p><strong>Conclusion: </strong>Our study revealed the possibility that inhibiting USP36 combined with tamoxifen could provide a potential therapy for breast cancer.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-delivery of camptothecin and MiR-145 by lipid nanoparticles for MRI-visible targeted therapy of hepatocellular carcinoma. 通过脂质纳米颗粒联合递送喜树碱和 MiR-145,用于肝细胞癌的核磁共振可视靶向治疗。
IF 11.4 1区 医学
Journal of Experimental & Clinical Cancer Research Pub Date : 2024-08-30 DOI: 10.1186/s13046-024-03167-9
Jing Rong, Tongtong Liu, Xiujuan Yin, Min Shao, Kun Zhu, Bin Li, Shiqi Wang, Yujie Zhu, Saisai Zhang, Likang Yin, Qi Liu, Xiao Wang, Lei Zhang
{"title":"Co-delivery of camptothecin and MiR-145 by lipid nanoparticles for MRI-visible targeted therapy of hepatocellular carcinoma.","authors":"Jing Rong, Tongtong Liu, Xiujuan Yin, Min Shao, Kun Zhu, Bin Li, Shiqi Wang, Yujie Zhu, Saisai Zhang, Likang Yin, Qi Liu, Xiao Wang, Lei Zhang","doi":"10.1186/s13046-024-03167-9","DOIUrl":"10.1186/s13046-024-03167-9","url":null,"abstract":"<p><strong>Background: </strong>Camptothecin (CPT) is one of the frequently used small chemotherapy drugs for treating hepatocellular carcinoma (HCC), but its clinical application is limited due to severe toxicities and acquired resistance. Combined chemo-gene therapy has been reported to be an effective strategy for counteracting drug resistance while sensitizing cancer cells to cytotoxic agents. Thus, we hypothesized that combining CPT with miR-145 could synergistically suppress tumor proliferation and enhance anti-tumor activity.</p><p><strong>Methods: </strong>Lactobionic acid (LA) modified lipid nanoparticles (LNPs) were developed to co-deliver CPT and miR-145 into asialoglycoprotein receptors-expressing HCC in vitro and in vivo. We evaluated the synergetic antitumor effect of miR-145 and CPT using CCK8, Western blotting, apoptosis and wound scratch assay in vitro, and the mechanisms underlying the synergetic antitumor effects were further investigated. Tumor inhibitory efficacy, safety evaluation and MRI-visible ability were assessed using diethylnitrosamine (DEN) + CCl<sub>4</sub>-induced HCC mouse model.</p><p><strong>Results: </strong>The LA modification improved the targeting delivery of cargos to HCC cells and tissues. The LA-CMGL-mediated co-delivery of miR-145 and CPT is more effective on tumor inhibitory than LA-CPT-L or LA-miR-145-L treatment alone, both in vitro and in vivo, with almost no side effects during the treatment period. Mechanistically, miR-145 likely induces apoptosis by targeting SUMO-specific peptidase 1 (SENP1)-mediated hexokinase (HK2) SUMOylation and glycolysis pathways and, in turn, sensitizing the cancer cells to CPT. In vitro and in vivo tests confirmed that the loaded Gd-DOTA served as an effective T1-weighted contrast agent for noninvasive tumor detection as well as real-time monitoring of drug delivery and biodistribution.</p><p><strong>Conclusions: </strong>The LA-CMGL-mediated co-delivery of miR-145 and CPT displays a synergistic therapy against HCC. The novel MRI-visible, actively targeted chemo-gene co-delivery system for HCC therapy provides a scientific basis and a useful idea for the development of HCC treatment strategies in the future.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363558/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic lethality of combined ULK1 defection and p53 restoration induce pyroptosis by directly upregulating GSDME transcription and cleavage activation through ROS/NLRP3 signaling. 结合 ULK1 缺陷和 p53 恢复的合成致死率通过 ROS/NLRP3 信号直接上调 GSDME 的转录和裂解激活,诱导热猝死。
IF 11.4 1区 医学
Journal of Experimental & Clinical Cancer Research Pub Date : 2024-08-30 DOI: 10.1186/s13046-024-03168-8
Wei Chen, Kai-Bin Yang, Yuan-Zhe Zhang, Zai-Shan Lin, Jin-Wei Chen, Si-Fan Qi, Chen-Fei Wu, Gong-Kan Feng, Da-Jun Yang, Ming Chen, Xiao-Feng Zhu, Xuan Li
{"title":"Synthetic lethality of combined ULK1 defection and p53 restoration induce pyroptosis by directly upregulating GSDME transcription and cleavage activation through ROS/NLRP3 signaling.","authors":"Wei Chen, Kai-Bin Yang, Yuan-Zhe Zhang, Zai-Shan Lin, Jin-Wei Chen, Si-Fan Qi, Chen-Fei Wu, Gong-Kan Feng, Da-Jun Yang, Ming Chen, Xiao-Feng Zhu, Xuan Li","doi":"10.1186/s13046-024-03168-8","DOIUrl":"10.1186/s13046-024-03168-8","url":null,"abstract":"<p><strong>Background: </strong>High expression of ubiquitin ligase MDM2 is a primary cause of p53 inactivation in many tumors, making it a promising therapeutic target. However, MDM2 inhibitors have failed in clinical trials due to p53-induced feedback that enhances MDM2 expression. This underscores the urgent need to find an effective adaptive genotype or combination of targets.</p><p><strong>Methods: </strong>Kinome-wide CRISPR/Cas9 knockout screen was performed to identify genes that modulate the response to MDM2 inhibitor using TP53 wild type cancer cells and found ULK1 as a candidate. The MTT cell viability assay, flow cytometry and LDH assay were conducted to evaluate the activation of pyroptosis and the synthetic lethality effects of combining ULK1 depletion with p53 activation. Dual-luciferase reporter assay and ChIP-qPCR were performed to confirm that p53 directly mediates the transcription of GSDME and to identify the binding region of p53 in the promoter of GSDME. ULK1 knockout / overexpression cells were constructed to investigate the functional role of ULK1 both in vitro and in vivo. The mechanism of ULK1 depletion to activate GSMDE was mainly investigated by qPCR, western blot and ELISA.</p><p><strong>Results: </strong>By using high-throughput screening, we identified ULK1 as a synthetic lethal gene for the MDM2 inhibitor APG115. It was determined that deletion of ULK1 significantly increased the sensitivity, with cells undergoing typical pyroptosis. Mechanistically, p53 promote pyroptosis initiation by directly mediating GSDME transcription that induce basal-level pyroptosis. Moreover, ULK1 depletion reduces mitophagy, resulting in the accumulation of damaged mitochondria and subsequent increasing of reactive oxygen species (ROS). This in turn cleaves and activates GSDME via the NLRP3-Caspase inflammatory signaling axis. The molecular cascade makes ULK1 act as a crucial regulator of pyroptosis initiation mediated by p53 activation cells. Besides, mitophagy is enhanced in platinum-resistant tumors, and ULK1 depletion/p53 activation has a synergistic lethal effect on these tumors, inducing pyroptosis through GSDME directly.</p><p><strong>Conclusion: </strong>Our research demonstrates that ULK1 deficiency can synergize with MDM2 inhibitors to induce pyroptosis. p53 plays a direct role in activating GSDME transcription, while ULK1 deficiency triggers upregulation of the ROS-NLRP3 signaling pathway, leading to GSDME cleavage and activation. These findings underscore the pivotal role of p53 in determining pyroptosis and provide new avenues for the clinical application of p53 restoration therapies, as well as suggesting potential combination strategies.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: HOXD9 promotes epithelial-mesenchymal transition and cancer metastasis by ZEB1 regulation in hepatocellular carcinoma. 撤稿说明:HOXD9通过调控ZEB1促进肝细胞癌的上皮-间质转化和癌症转移。
IF 11.4 1区 医学
Journal of Experimental & Clinical Cancer Research Pub Date : 2024-08-30 DOI: 10.1186/s13046-024-03171-z
Xiupeng Lv, Linlin Li, Li Lv, Xiaotong Qu, Shi Jin, Kejun Li, Xiaoqin Deng, Lei Cheng, Hui He, Lei Dong
{"title":"Retraction Note: HOXD9 promotes epithelial-mesenchymal transition and cancer metastasis by ZEB1 regulation in hepatocellular carcinoma.","authors":"Xiupeng Lv, Linlin Li, Li Lv, Xiaotong Qu, Shi Jin, Kejun Li, Xiaoqin Deng, Lei Cheng, Hui He, Lei Dong","doi":"10.1186/s13046-024-03171-z","DOIUrl":"10.1186/s13046-024-03171-z","url":null,"abstract":"","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CCT3/ACTN4/TFRC axis protects hepatocellular carcinoma cells from ferroptosis by inhibiting iron endocytosis. CCT3/ACTN4/TFRC轴通过抑制铁的内吞保护肝癌细胞免于铁中毒。
IF 11.4 1区 医学
Journal of Experimental & Clinical Cancer Research Pub Date : 2024-08-29 DOI: 10.1186/s13046-024-03169-7
Huihui Zhu, Qiuhong Liu, Qinna Meng, Lingjian Zhang, Siwei Ju, Jiaheng Lang, Danhua Zhu, Yongxia Chen, Nadire Aishan, Xiaoxi Ouyang, Sainan Zhang, Lidan Jin, Lanlan Xiao, Linbo Wang, Lanjuan Li, Feiyang Ji
{"title":"CCT3/ACTN4/TFRC axis protects hepatocellular carcinoma cells from ferroptosis by inhibiting iron endocytosis.","authors":"Huihui Zhu, Qiuhong Liu, Qinna Meng, Lingjian Zhang, Siwei Ju, Jiaheng Lang, Danhua Zhu, Yongxia Chen, Nadire Aishan, Xiaoxi Ouyang, Sainan Zhang, Lidan Jin, Lanlan Xiao, Linbo Wang, Lanjuan Li, Feiyang Ji","doi":"10.1186/s13046-024-03169-7","DOIUrl":"10.1186/s13046-024-03169-7","url":null,"abstract":"<p><p>Sorafenib is widely used in treating advanced hepatocellular carcinoma (HCC). However, its effectiveness in prolonging patient survival is limited by the development of drug resistance. To systematically investigate the resistance mechanisms of Sorafenib, an integrative analysis combining posttranslational modification (PTM) omics and CRISPR/Cas9 knockout library screening was conducted. This analysis identified ubiquitination at lysine 21 (K21) on chaperonin-containing TCP1 subunit 3 (CCT3) as being associated with Sorafenib resistance. Transcriptomic data from HCC patients treated with Sorafenib revealed that CCT3 expression was lower in responders compared to non-responders. Experimentally, inhibiting the expression of CCT3 sensitized HCC cells to Sorafenib and enhanced Sorafenib-induced ferroptosis. Additionally, CCT3 was found to interact with ACTN4, hindering the recycling of transferrin receptor protein 1 (TFRC) to the cell membrane, thus obstructing iron endocytosis. Mechanistically, the inhibition of ferroptosis by CCT3 depends on the deubiquitination of K6-linked non-degradative ubiquitination at its K21, which occurs upon Sorafenib treatment. Moreover, CCT3 knockdown enhanced the anti-tumor effects of Sorafenib in nude mice. In summary, we have identified a novel function of the chaperone protein. Targeting the CCT3/ACTN4/TFRC axis offers a promising strategy to enhance ferroptosis and overcome Sorafenib resistance in HCC.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: TFEB controls sensitivity to chemotherapy and immuno-killing in non-small cell lung cancer. 更正:TFEB控制着非小细胞肺癌对化疗和免疫杀伤的敏感性。
IF 11.4 1区 医学
Journal of Experimental & Clinical Cancer Research Pub Date : 2024-08-29 DOI: 10.1186/s13046-024-03170-0
Muhlis Akman, Ciro Monteleone, Gabriella Doronzo, Martina Godel, Francesca Napoli, Alessandra Merlini, Virginia Campani, Valeria Nele, Elisa Balmas, Tatiana Chontorotzea, Simona Fontana, Sabrina Digiovanni, Francesca Alice Barbu, Elena Astanina, Niloufar Jafari, Iris Chiara Salaroglio, Joanna Kopecka, Giuseppe De Rosa, Thomas Mohr, Alessandro Bertero, Luisella Righi, Silvia Novello, Giorgio Vittorio Scagliotti, Federico Bussolino, Chiara Riganti
{"title":"Correction: TFEB controls sensitivity to chemotherapy and immuno-killing in non-small cell lung cancer.","authors":"Muhlis Akman, Ciro Monteleone, Gabriella Doronzo, Martina Godel, Francesca Napoli, Alessandra Merlini, Virginia Campani, Valeria Nele, Elisa Balmas, Tatiana Chontorotzea, Simona Fontana, Sabrina Digiovanni, Francesca Alice Barbu, Elena Astanina, Niloufar Jafari, Iris Chiara Salaroglio, Joanna Kopecka, Giuseppe De Rosa, Thomas Mohr, Alessandro Bertero, Luisella Righi, Silvia Novello, Giorgio Vittorio Scagliotti, Federico Bussolino, Chiara Riganti","doi":"10.1186/s13046-024-03170-0","DOIUrl":"10.1186/s13046-024-03170-0","url":null,"abstract":"","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Bispecifc aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: implications for precision phototherapies. 更正:以乳腺癌衍生组织细胞中的肿瘤细胞和基质细胞为靶标的双胰蛋白酶适配体装饰和光触发纳米粒子:对精准光疗的启示
IF 11.4 1区 医学
Journal of Experimental & Clinical Cancer Research Pub Date : 2024-08-23 DOI: 10.1186/s13046-024-03159-9
Simona Camorani, Alessandra Caliendo, Elena Morrone, Lisa Agnello, Matteo Martini, Monica Cantile, Margherita Cerrone, Antonella Zannetti, Massimo La Deda, Monica Fedele, Loredana Ricciardi, Laura Cerchia
{"title":"Correction: Bispecifc aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: implications for precision phototherapies.","authors":"Simona Camorani, Alessandra Caliendo, Elena Morrone, Lisa Agnello, Matteo Martini, Monica Cantile, Margherita Cerrone, Antonella Zannetti, Massimo La Deda, Monica Fedele, Loredana Ricciardi, Laura Cerchia","doi":"10.1186/s13046-024-03159-9","DOIUrl":"10.1186/s13046-024-03159-9","url":null,"abstract":"","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circulating cell-free and extracellular vesicles-derived microRNA as prognostic biomarkers in patients with early-stage NSCLC: results from RESTING study. 作为早期 NSCLC 患者预后生物标志物的循环无细胞和细胞外囊泡衍生 microRNA:RESTING 研究的结果。
IF 11.4 1区 医学
Journal of Experimental & Clinical Cancer Research Pub Date : 2024-08-22 DOI: 10.1186/s13046-024-03156-y
Elisabetta Petracci, Luigi Pasini, Milena Urbini, Enriqueta Felip, Franco Stella, Fabio Davoli, Maurizio Salvi, Michele Beau-Faller, Michela Tebaldi, Irene Azzali, Matteo Canale, Piergiorgio Solli, Giulia Lai, Ramon Amat, Caterina Carbonell, Pierre-Emmanuel Falcoz, Alex Martinez-Marti, Erwan Pencreach, Angelo Delmonte, Lucio Crinò, Paola Ulivi
{"title":"Circulating cell-free and extracellular vesicles-derived microRNA as prognostic biomarkers in patients with early-stage NSCLC: results from RESTING study.","authors":"Elisabetta Petracci, Luigi Pasini, Milena Urbini, Enriqueta Felip, Franco Stella, Fabio Davoli, Maurizio Salvi, Michele Beau-Faller, Michela Tebaldi, Irene Azzali, Matteo Canale, Piergiorgio Solli, Giulia Lai, Ramon Amat, Caterina Carbonell, Pierre-Emmanuel Falcoz, Alex Martinez-Marti, Erwan Pencreach, Angelo Delmonte, Lucio Crinò, Paola Ulivi","doi":"10.1186/s13046-024-03156-y","DOIUrl":"10.1186/s13046-024-03156-y","url":null,"abstract":"<p><strong>Background: </strong>Factors to accurately stratify patients with early-stage non-small cell lung cancer (NSCLC) in different prognostic groups are still needed. This study aims to investigate 1) the prognostic potential of circulating cell-free (CF) and extracellular vesicles (EVs)-derived microRNA (miRNAs), and 2) their added value with respect to known prognostic factors (PFs).</p><p><strong>Methods: </strong>The RESTING study is a multicentre prospective observational cohort study on resected stage IA-IIIA patients with NSCLC. The primary end-point was disease-free survival (DFS), and the main analyses were carried out separately for CF- and EV-miRNAs. CF- and EV-miRNAs were isolated from plasma, and miRNA-specific libraries were prepared and sequenced. To reach the study aims, three statistical models were specified: one using the miRNA data only (Model 1); one using both miRNAs and known PFs (age, gender, and pathological stage) (Model 2), and one using the PFs alone (Model 3). Five-fold cross-validation (CV) was used to assess the predictive performance of each. Standard Cox regression and elastic net regularized Cox regression were used.</p><p><strong>Results: </strong>A total of 222 patients were enrolled. The median follow-up time was 26.3 (95% CI 25.4-27.6) months. From Model 1, three CF-miRNAs and 21 EV-miRNAs were associated with DFS. In Model 2, two CF-miRNAs (miR-29c-3p and miR-877-3p) and five EV-miRNAs (miR-181a-2-3p, miR-182-5p, miR-192-5p, miR-532-3p and miR-589-5p) remained associated with DFS. From pathway enrichment analysis, TGF-beta and NOTCH were the most involved pathways.</p><p><strong>Conclusion: </strong>This study identified promising prognostic CF- and EV-miRNAs that could be used as a non-invasive, cost-effective tool to aid clinical decision-making. However, further evaluation of the obtained miRNAs in an external cohort of patients is warranted.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信