Silvia Sozzi, Isabella Manni, Cristiana Ercolani, Maria Grazia Diodoro, Armando Bartolazzi, Francesco Spallotta, Giulia Piaggio, Laura Monteonofrio, Silvia Soddu, Cinzia Rinaldo, Davide Valente
{"title":"Inactivation of HIPK2 attenuates KRAS<sup>G12D</sup> activity and prevents pancreatic tumorigenesis.","authors":"Silvia Sozzi, Isabella Manni, Cristiana Ercolani, Maria Grazia Diodoro, Armando Bartolazzi, Francesco Spallotta, Giulia Piaggio, Laura Monteonofrio, Silvia Soddu, Cinzia Rinaldo, Davide Valente","doi":"10.1186/s13046-024-03189-3","DOIUrl":"10.1186/s13046-024-03189-3","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) features KRAS mutations in approximately 90% of human cases and excessive stromal response, termed desmoplastic reaction. Oncogenic KRAS drives pancreatic carcinogenesis by acting on both epithelial cells and tumor microenvironment (TME). We have previously shown that Homeodomain-Interacting Protein Kinase 2 (HIPK2) cooperates with KRAS in sustaining ERK1/2 phosphorylation in human colorectal cancers. Here, we investigated whether HIPK2 contributes to oncogenic KRAS-driven tumorigenesis in vivo, in the onset of pancreatic cancer.</p><p><strong>Methods: </strong>We employed an extensively characterized model of KRAS<sup>G12D</sup>-dependent preinvasive PDAC, the Pdx1-Cre;LSL-KRas<sup>G12D/+</sup> (KC) mice. In these mice, HIPK2 was inhibited by genetic knockout in the pancreatic epithelial cells (KCH<sup>-/-</sup>) or by pharmacologic inactivation with the small molecule 5-IodoTubercidin (5-ITu). The development of preneoplastic acinar-to-ductal metaplasia (ADM), intraepithelial neoplasia (PanIN), and their associated desmoplastic reaction were analyzed.</p><p><strong>Results: </strong>In Hipk2-KO mice (KCH<sup>-/-</sup>), ERK phosphorylation was lowered, the appearance of ADM was slowed down, and both the number and pathologic grade of PanIN were reduced compared to Hipk2-WT KC mice. The pancreatic lesion phenotype in KCH<sup>-/-</sup> mice was characterized by abundant collagen fibers and reduced number of αSMA<sup>+</sup> and pSTAT3<sup>+</sup> desmoplastic cells. These features were reminiscent of the recently described human \"deserted\" sub-TME, poor in cells, rich in matrix, and associated with tumor differentiation. In contrast, the desmoplastic reaction of KC mice resembled the \"reactive\" sub-TME, rich in stromal cells and associated with tumor progression. These observations were confirmed by the pharmacologic inhibition of HIPK2 in KC mice.</p><p><strong>Conclusion: </strong>This study demonstrates that HIPK2 inhibition weakens oncogenic KRAS activity and pancreatic tumorigenesis providing a rationale for testing HIPK2 inhibitors to mitigate the incidence of PDAC development in high-risk individuals.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"265"},"PeriodicalIF":11.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Casas-Arozamena, Ana Vilar, Juan Cueva, Efigenia Arias, Victoria Sampayo, Eva Diaz, Sara S Oltra, Cristian Pablo Moiola, Silvia Cabrera, Alexandra Cortegoso, Teresa Curiel, Alicia Abalo, Mónica Pamies Serrano, Santiago Domingo, Pablo Padilla-Iserte, Marta Arnaez de la Cruz, Alicia Hernández, Virginia García-Pineda, Juan Ruiz-Bañobre, Rafael López, Xavier Matias-Guiu, Eva Colás, Antonio Gil-Moreno, Miguel Abal, Gema Moreno-Bueno, Laura Muinelo-Romay
{"title":"Role of cfDNA and ctDNA to improve the risk stratification and the disease follow-up in patients with endometrial cancer: towards the clinical application.","authors":"Carlos Casas-Arozamena, Ana Vilar, Juan Cueva, Efigenia Arias, Victoria Sampayo, Eva Diaz, Sara S Oltra, Cristian Pablo Moiola, Silvia Cabrera, Alexandra Cortegoso, Teresa Curiel, Alicia Abalo, Mónica Pamies Serrano, Santiago Domingo, Pablo Padilla-Iserte, Marta Arnaez de la Cruz, Alicia Hernández, Virginia García-Pineda, Juan Ruiz-Bañobre, Rafael López, Xavier Matias-Guiu, Eva Colás, Antonio Gil-Moreno, Miguel Abal, Gema Moreno-Bueno, Laura Muinelo-Romay","doi":"10.1186/s13046-024-03158-w","DOIUrl":"https://doi.org/10.1186/s13046-024-03158-w","url":null,"abstract":"<p><strong>Background: </strong>There has been a rise in endometrial cancer (EC) incidence leading to increased mortality. To counter this trend, improving the stratification of post-surgery recurrence risk and anticipating disease relapse and treatment resistance is essential. Liquid biopsy analyses offer a promising tool for these clinical challenges, though the best strategy for applying them in EC must be defined. This study was designed to determine the value of cfDNA/ctDNA monitoring in improving the clinical management of patients with localized and recurrent disease.</p><p><strong>Methods: </strong>Plasma samples and uterine aspirates (UA) from 198 EC patients were collected at surgery and over time. The genetic landscape of UAs was characterized using targeted sequencing. Total cfDNA was analyzed for ctDNA presence based on the UA mutational profile.</p><p><strong>Results: </strong>High cfDNA levels and detectable ctDNA at baseline correlated with poor prognosis for DFS (p-value < 0.0001; HR = 9.25) and DSS (p-value < 0.0001; HR = 11.20). This remained clinically significant when stratifying tumors by histopathological risk factors. Of note, cfDNA/ctDNA analyses discriminated patients with early post-surgery relapse and the ctDNA kinetics served to identify patients undergoing relapse before any clinical evidence emerged.</p><p><strong>Conclusions: </strong>This is the most comprehensive study on cfDNA/ctDNA characterization in EC, demonstrating its value in improving risk stratification and anticipating disease relapse in patients with localized disease. CtDNA kinetics assessment complements current strategies to monitor the disease evolution and the treatment response. Therefore, implementing cfDNA/ctDNA monitoring in clinical routines offers a unique opportunity to improve EC management.</p><p><strong>Translational relevance: </strong>The study demonstrates that high levels of cfDNA and detectable ctDNA at baseline are strong indicators of poor prognosis. This enables more accurate risk stratification beyond traditional histopathological factors, allowing clinicians to identify high-risk patients who may benefit from more aggressive treatment and closer monitoring. Moreover, longitudinal analysis of cfDNA/ctDNA can detect disease recurrence months before clinical symptoms or imaging evidence appear. This early warning system offers a significant advantage in clinical practice, providing a window of opportunity for early intervention and potentially improving patient outcomes.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"264"},"PeriodicalIF":11.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adrien Krug, Aymen Saidane, Chiara Martinello, Floriane Fusil, Alexander Michels, Christian J. Buchholz, Jean-Ehrland Ricci, Els Verhoeyen
{"title":"In vivo CAR T cell therapy against angioimmunoblastic T cell lymphoma","authors":"Adrien Krug, Aymen Saidane, Chiara Martinello, Floriane Fusil, Alexander Michels, Christian J. Buchholz, Jean-Ehrland Ricci, Els Verhoeyen","doi":"10.1186/s13046-024-03179-5","DOIUrl":"https://doi.org/10.1186/s13046-024-03179-5","url":null,"abstract":"For angioimmunoblastic T cell lymphoma (AITL), a rare cancer, no specific treatments are available and survival outcome is poor. We previously developed a murine model for AITL that mimics closely human disease and allows to evaluate new treatments. As in human AITL, the murine CD4+ follicular helper T (Tfh) cells are drivers of the malignancy. Therefore, chimeric antigen receptor (CAR) T cell therapy might represent a new therapeutic option. To prevent fratricide among CAR T cells when delivering an CD4-specific CAR, we used a lentiviral vector (LV) encoding an anti-CD4 CAR, allowing exclusive entry into CD8 T cells. These anti-CD4CAR CD8-targeted LVs achieved in murine AITL biopsies high CAR-expression levels in CD8 T cells. Malignant CD4 Tfh cells were eliminated from the mAITL lymphoma, while the CAR + CD8 T cells expanded upon encounter with the CD4 receptor and were shaped into functional cytotoxic cells. Finally, in vivo injection of the CAR + CD8-LVs into our preclinical AITL mouse model carrying lymphomas, significantly prolonged mice survival. Moreover, the in vivo generated functional CAR + CD8 T cells efficiently reduced neoplastic T cell numbers in the mAITL tumors. This is the first description of in vivo generated CAR T cells for therapy of a T cell lymphoma. The strategy described offers a new therapeutic concept for patients suffering from CD4-driven T cell lymphomas.","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"53 60 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Satish kumar Reddy Noonepalle, Maria Gracia-Hernandez, Nima Aghdam, Michael Berrigan, Hawa Coulibaly, Xintang Li, Christian Zevallos-Delgado, Andrew Pletcher, Bryan Weselman, Erica Palmer, Tessa Knox, Eduardo Sotomayor, Katherine B. Chiappinelli, Duncan Wardrop, Anelia Horvath, Brett A. Shook, Norman Lee, Anatoly Dritschilo, Rohan Fernandes, Karthik Musunuri, Maho Shibata, Alejandro Villagra
{"title":"Cell therapy using ex vivo reprogrammed macrophages enhances antitumor immune responses in melanoma","authors":"Satish kumar Reddy Noonepalle, Maria Gracia-Hernandez, Nima Aghdam, Michael Berrigan, Hawa Coulibaly, Xintang Li, Christian Zevallos-Delgado, Andrew Pletcher, Bryan Weselman, Erica Palmer, Tessa Knox, Eduardo Sotomayor, Katherine B. Chiappinelli, Duncan Wardrop, Anelia Horvath, Brett A. Shook, Norman Lee, Anatoly Dritschilo, Rohan Fernandes, Karthik Musunuri, Maho Shibata, Alejandro Villagra","doi":"10.1186/s13046-024-03182-w","DOIUrl":"https://doi.org/10.1186/s13046-024-03182-w","url":null,"abstract":"Macrophage-based cell therapies have shown modest success in clinical trials, which can be attributed to their phenotypic plasticity, where transplanted macrophages get reprogrammed towards a pro-tumor phenotype. In most tumor types, including melanoma, the balance between antitumor M1-like and tumor-promoting M2-like macrophages is critical in defining the local immune response with a higher M1/M2 ratio favoring antitumor immunity. Therefore, designing novel strategies to increase the M1/M2 ratio in the TME has high clinical significance and benefits macrophage-based cell therapies. In this study, we reprogrammed antitumor and proinflammatory macrophages ex-vivo with HDAC6 inhibitors (HDAC6i). We administered the reprogrammed macrophages intratumorally as an adoptive cell therapy (ACT) in the syngeneic SM1 murine melanoma model and patient-derived xenograft bearing NSG-SGM3 humanized mouse models. We phenotyped the tumor-infiltrated immune cells by flow cytometry and histological analysis of tumor sections for macrophage markers. We performed bulk RNA-seq profiling of murine bone marrow-derived macrophages treated with vehicle or HDAC6i and single-cell RNA-seq profiling of SM1 tumor-infiltrated immune cells to determine the effect of intratumor macrophage ACT on the tumor microenvironment (TME). We further analyzed the single-cell data to identify key cell-cell interactions and trajectory analysis to determine the fate of tumor-associated macrophages post-ACT. Macrophage ACT resulted in diminished tumor growth in both mouse models. We also demonstrated that HDAC6 inhibition in macrophages suppressed the polarization toward tumor-promoting phenotype by attenuating STAT3-mediated M2 reprogramming. Two weeks post-transplantation, ACT macrophages were viable, and inhibition of HDAC6 rendered intratumor transplanted M1 macrophages resistant to repolarization towards protumor M2 phenotype in-vivo. Further characterization of tumors by flow cytometry, single-cell transcriptomics, and single-cell secretome analyses revealed a significant enrichment of antitumor M1-like macrophages, resulting in increased M1/M2 ratio and infiltration of CD8 effector T-cells. Computational analysis of single-cell RNA-seq data for cell-cell interactions and trajectory analyses indicated activation of monocytes and T-cells in the TME. In summary, for the first time, we demonstrated the potential of reprogramming macrophages ex-vivo with HDAC6 inhibitors as a viable macrophage cell therapy to treat solid tumors.","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"49 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Chen, Hengyang Shen, Zhenling Wang, Changzhi Huang, Hongqiang Zhang, Yu Shao, Ying Tong, Lei Xu, Yunfei Lu, Zan Fu
{"title":"Recruitment of USP10 by GCS1 to deubiquitinate GRP78 promotes the progression of colorectal cancer via alleviating endoplasmic reticulum stress","authors":"Yang Chen, Hengyang Shen, Zhenling Wang, Changzhi Huang, Hongqiang Zhang, Yu Shao, Ying Tong, Lei Xu, Yunfei Lu, Zan Fu","doi":"10.1186/s13046-024-03176-8","DOIUrl":"https://doi.org/10.1186/s13046-024-03176-8","url":null,"abstract":"Long-term accumulation of misfolded proteins leads to endoplasmic reticulum (ER) stress in colorectal cancer (CRC). However, the precise pathways controlling the decision between survival and apoptosis in CRC are unclear. Therefore, in this study, we investigated the function and molecular mechanism of glucosidase I (GCS1) in regulating ER stress in CRC. A public database was used to confirm the expression level of GCS1 in CRC and normal tissues. Clinical samples from our center were used to confirm the mRNA and protein expression levels of GCS1. Cell proliferation, migration, invasion, and apoptosis assays revealed the biological role of GCS1. Immunohistochemical techniques were used to evaluate the expression of key proteins in subcutaneous implanted tumors in nude mice, which provided further evidence for the biological function of GCS1 in promoting cancer in vivo. The results of coimmunoprecipitation-mass spectrometry analysis and immunofluorescence colocalization analysis the interaction between GCS1 and GRP78. In addition, the mechanism of action of USP10, GRP78, and GCS1 at the post- translational level was investigated. Finally, a tissue microarray was used to examine the connection between GCS1 and GRP78 expression and intracellular localization of these proteins using immunohistochemistry and immunofluorescence. The experimental results revealed that GCS1 was substantially expressed in CRC, with higher expression indicating a worse prognosis. Thus, GCS1 can enhance the proliferation and metastasis while inhibiting the apoptosis of CRC cells both in vivo and in vitro. Mechanistically, GCS1 binds to GRP78, recruits USP10 for deubiquitination of GRP78 to promote its degradation, and decreases ER stress-mediated apoptosis, increasing CRC cell proliferation and metastasis. In summary, GCS1 stimulates CRC growth and migration and reduces ER stress-mediated apoptosis via USP10-mediated deubiquitination of GRP78. Our findings identify a possible therapeutic target for CRC.","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"36 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STUB1-mediated K63-linked ubiquitination of UHRF1 promotes the progression of cholangiocarcinoma by maintaining DNA hypermethylation of PLA2G2A","authors":"Junsheng Chen, Da Wang, Guanhua Wu, Fei Xiong, Wenzheng Liu, Qi Wang, Yiyang Kuai, Wenhua Huang, Yongqiang Qi, Bing Wang, Yongjun Chen","doi":"10.1186/s13046-024-03186-6","DOIUrl":"https://doi.org/10.1186/s13046-024-03186-6","url":null,"abstract":"Cholangiocarcinoma (CCA) is a highly malignant tumor characterized by a lack of effective targeted therapeutic strategies. The protein UHRF1 plays a pivotal role in the preservation of DNA methylation and works synergistically with DNMT1. Posttranscriptional modifications (PTMs), such as ubiquitination, play indispensable roles in facilitating this process. Nevertheless, the specific PTMs that regulate UHRF1 in CCA remain unidentified. We confirmed the interaction between STUB1 and UHRF1 through mass spectrometry analysis. Furthermore, we investigated the underlying mechanisms of the STUB1-UHRF1/DNMT1 axis via co-IP experiments, denaturing IP ubiquitination experiments, nuclear‒cytoplasmic separation and immunofluorescence experiments. The downstream PLA2G2A gene, regulated by the STUB1-UHRF1/DNMT1 axis, was identified via RNA-seq. The negative regulatory mechanism of PLA2G2A was explored via bisulfite sequencing PCR (BSP) experiments to assess changes in promoter methylation. The roles of PLA2G2A and STUB1 in the proliferation, invasion, and migration of CCA cells were assessed using the CCK-8 assay, colony formation assay, Transwell assay, wound healing assay and xenograft mouse model. We evaluated the effects of STUB1/UHRF1 on cholangiocarcinoma by utilizing a primary CCA mouse model. This study revealed that STUB1 interacts with UHRF1, resulting in an increase in the K63-linked ubiquitination of UHRF1. Consequently, this facilitates the nuclear translocation of UHRF1 and enhances its binding affinity with DNMT1. The STUB1-UHRF1/DNMT1 axis led to increased DNA methylation of the PLA2G2A promoter, subsequently repressing its expression. Increased STUB1 expression in CCA was inversely correlated with tumor progression and overall survival. Conversely, PLA2G2A functions as a tumor suppressor in CCA by inhibiting cell proliferation, invasion and migration. These findings suggest that the STUB1-mediated ubiquitination of UHRF1 plays a pivotal role in tumor progression by epigenetically silencing PLA2G2A, underscoring the potential of STUB1 as both a prognostic biomarker and therapeutic target for CCA. ","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"8 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tumor-associated neutrophils upregulate Nectin2 expression, creating the immunosuppressive microenvironment in pancreatic ductal adenocarcinoma","authors":"Haizhen Luo, Naoki Ikenaga, Kohei Nakata, Nobuhiro Higashijima, Pingshan Zhong, Akihiro Kubo, Chenyi Wu, Chikanori Tsutsumi, Yuki Shimada, Masataka Hayashi, Koki Oyama, Satomi Date, Toshiya Abe, Noboru Ideno, Chika Iwamoto, Koji Shindo, Kenoki Ohuchida, Yoshinao Oda, Masafumi Nakamura","doi":"10.1186/s13046-024-03178-6","DOIUrl":"https://doi.org/10.1186/s13046-024-03178-6","url":null,"abstract":"Tumor-associated neutrophils (TANs) constitute an abundant component among tumor-infiltrating immune cells and have recently emerged as a critical player in pancreatic ductal adenocarcinoma (PDAC) progression. This study aimed to elucidate the pro-tumor mechanisms of TAN and identify a novel target for effective immunotherapy against PDAC. Microarray and cytokine array analyses were performed to identify the mechanisms underlying the function of TANs. Human and mouse TANs were obtained from differentiated HL-60 cells and orthotopically transplanted PDAC tumors, respectively. The interactions of TANs with cancer and cytotoxic T-cells were evaluated through in vitro co-culture and in vivo orthotopic or subcutaneous models. Single-cell transcriptomes from patients with PDAC were analyzed to validate the cellular findings. Increased neutrophil infiltration in the tumor microenvironment was associated with poor survival in patients with PDAC. TANs secreted abundant amounts of chemokine ligand 5 (CCL5), subsequently enhancing cancer cell migration and invasion. TANs subpopulations negatively correlated with cytotoxic CD8+ T-cell infiltration in PDAC and promoted T-cell dysfunction. TANs upregulated the membranous expression of Nectin2, which contributed to CD8+ T-cell exhaustion. Blocking Nectin2 improved CD8+ T-cell function and suppressed tumor progression in the mouse model. Single-cell analysis of human PDAC revealed two immunosuppressive TANs phenotypes: Nectin2+ TANs and OLR1+ TANs. Endoplasmic reticulum stress regulated the protumor activities in TANs. TANs enhance PDAC progression by secreting CCL5 and upregulating Nectin2. Targeting the immune checkpoint Nectin2 could represent a novel strategy to enhance immunotherapy efficacy in PDAC.","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"58 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica Wagner, C. Leah Kline, Lanlan Zhou, Vladimir Khazak, Wafik S. El-Deiry
{"title":"Correction: Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms","authors":"Jessica Wagner, C. Leah Kline, Lanlan Zhou, Vladimir Khazak, Wafik S. El-Deiry","doi":"10.1186/s13046-024-03185-7","DOIUrl":"https://doi.org/10.1186/s13046-024-03185-7","url":null,"abstract":"<p><b>Correction: J Exp Clin Cancer Res 37, 11 (2018)</b></p><p><b>https://doi.org/10.1186/s13046-018-0671-0</b></p><br/><p>Following publication of the original article [1], the authors have been alerted to an error in Fig. 3A that shows a duplication of a histological image in two panels in the figure. This image duplication error in Fig. 3A was missed by all the authors and reviewers of the paper.\u0000</p><p><b>Incorrect Fig. 3</b></p><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 3</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig1_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 1\" aria-describedby=\"Fig1\" height=\"1000\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig1_HTML.png\" width=\"685\"/></picture><p>ONC201 does not impact VEGF expression in xenografts or HUVEC sprouting. <b>a</b> VEGF-A expression as detected by immunohistochemistry in HT29 and HCT116 CRC xenografts. <b>b</b> HUVEC representative images of sprouting from HUVECs grown on Matrigel. <b>c</b> Quantitation of HUVEC sprouting and branching after 12 h of drug treatment. In vivo: <i>n</i> = 5 ONC201 treatment dose was 50 mg/kg weekly. HUVECS <i>N</i> = 4, ONC201 treatment dose 5 μM, bevacizumab dose 5 mg/ml</p><span>Full size image</span><svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></figure><p><b>Correct Fig. 3</b></p><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 3</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig2_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 2\" aria-describedby=\"Fig2\" height=\"994\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig2_HTML.png\" width=\"685\"/></picture><p>ONC201 does not impact VEGF expression in xenografts or HUVEC sprouting. <b>a</b> VEGF-A expression as detected by immunohistochemistry in HT29 and HCT116 CRC xenografts. <b>b</b> HUVEC representative images of sprouting from HUVECs grown on Matrigel. <b>c</b> Quantitation of HUVEC sprouting and branching after 12 h of drug treatment. In vivo: <i>n</i> = 5 ONC201 treatment dose was 50 mg/kg weekly. HUVECS <i>N</i> = 4, ONC201 treatment dose 5 μM, bevacizumab dose 5 mg/ml</p><span>Full size image</span><svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></figure><ol data-track-component=\"outbound reference\" data-track-context=\"references section\"><li data-counter=\"1.\"><p>Wagner J, Kline C, Zhou L,","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"31 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valentin Benboubker, George M. Ramzy, Sacha Jacobs, Patrycja Nowak-Sliwinska
{"title":"Challenges in validation of combination treatment strategies for CRC using patient-derived organoids","authors":"Valentin Benboubker, George M. Ramzy, Sacha Jacobs, Patrycja Nowak-Sliwinska","doi":"10.1186/s13046-024-03173-x","DOIUrl":"https://doi.org/10.1186/s13046-024-03173-x","url":null,"abstract":"Patient-derived organoids (PDOs) established from tissues from various tumor types gave the foundation of ex vivo models to screen and/or validate the activity of many cancer drug candidates. Due to their phenotypic and genotypic similarity to the tumor of which they were derived, PDOs offer results that effectively complement those obtained from more complex models. Yet, their potential for predicting sensitivity to combination therapy remains underexplored. In this review, we discuss the use of PDOs in both validation and optimization of multi-drug combinations for personalized treatment strategies in CRC. Moreover, we present recent advancements in enriching PDOs with diverse cell types, enhancing their ability to mimic the complexity of in vivo environments. Finally, we debate how such sophisticated models are narrowing the gap in personalized medicine, particularly through immunotherapy strategies and discuss the challenges and future direction in this promising field.","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"52 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kewen He, Nahum Puebla-Osorio, Hampartsoum B. Barsoumian, Duygu Sezen, Zahid Rafq, Thomas S. Riad, Yun Hu, Ailing Huang, Tifany A. Voss, Claudia S. Kettlun Leyton, Lily Jae Schuda, Ethan Hsu, Joshua Heiber, Maria-Angelica Cortez, James W. Welsh
{"title":"Correction: Novel engineered IL-2 Nemvaleukin alfa combined with PD1 checkpoint blockade enhances the systemic anti-tumor responses of radiation therapy","authors":"Kewen He, Nahum Puebla-Osorio, Hampartsoum B. Barsoumian, Duygu Sezen, Zahid Rafq, Thomas S. Riad, Yun Hu, Ailing Huang, Tifany A. Voss, Claudia S. Kettlun Leyton, Lily Jae Schuda, Ethan Hsu, Joshua Heiber, Maria-Angelica Cortez, James W. Welsh","doi":"10.1186/s13046-024-03183-9","DOIUrl":"https://doi.org/10.1186/s13046-024-03183-9","url":null,"abstract":"<p><b>Correction: J Exp Clin Cancer Res 43, 251 (2024)</b></p><p><b>https://doi.org/10.1186/s13046-024-03165-x</b></p><p>Following publication of the original article [1], the authors found an error in the affiliation of the 5th author, Zahid Rafiq. He was mistakenly assign to Affiliation 1. The details are given below:</p><p>\u0000<b>Incorrect affiliation</b>:</p><p>\u0000<sup>1</sup> Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.</p><p>\u0000<b>Correct affiliation</b>:</p><p>\u0000<sup>2</sup> Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.</p><p>This correction does not affect the overall result or conclusion of the article. The original article [1] has been corrected.</p><ol data-track-component=\"outbound reference\" data-track-context=\"references section\"><li data-counter=\"1.\"><p>He K, Puebla-Osorio N, Barsoumian HB, et al. Novel engineered IL-2 Nemvaleukin alfa combined with PD1 checkpoint blockade enhances the systemic anti-tumor responses of radiation therapy. J Exp Clin Cancer Res. 2024;43:251. https://doi.org/10.1186/s13046-024-03165-x.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li></ol><p>Download references<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><h3>Authors and Affiliations</h3><ol><li><p>Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China</p><p>Kewen He</p></li><li><p>Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA</p><p>Kewen He, Nahum Puebla-Osorio, Hampartsoum B. Barsoumian, Duygu Sezen, Zahid Rafq, Thomas S. Riad, Yun Hu, Ailing Huang, Tifany A. Voss, Claudia S. Kettlun Leyton, Lily Jae Schuda, Ethan Hsu, Maria-Angelica Cortez & James W. Welsh</p></li><li><p>Department of Radiation Oncology, Koç University School of Medicine, Istanbul, Turkey</p><p>Duygu Sezen</p></li><li><p>Mural Oncology PLC, Waltham, MA, USA</p><p>Joshua Heiber</p></li></ol><span>Authors</span><ol><li><span>Kewen He</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Nahum Puebla-Osorio</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Hampartsoum B. Barsoumian</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Duygu Sezen</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"62 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}