TEAD3 + high-risk melanoma cells crosstalk with GAS6 + macrophages via the GAS6-TYRO3 ligand-receptor axis to modulate propionate metabolism and drive melanoma progression.
Yongjin Fang, Xiaofan Xu, Rihui Lu, Ye Huang, Xinshen Dai, Pucheng Huang, Xuefeng Fu, Pan Zhuge
{"title":"TEAD3 + high-risk melanoma cells crosstalk with GAS6 + macrophages via the GAS6-TYRO3 ligand-receptor axis to modulate propionate metabolism and drive melanoma progression.","authors":"Yongjin Fang, Xiaofan Xu, Rihui Lu, Ye Huang, Xinshen Dai, Pucheng Huang, Xuefeng Fu, Pan Zhuge","doi":"10.1186/s13046-025-03542-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Melanoma, a highly heterogeneous malignancy, remains refractory to conventional therapies due to poorly defined molecular and metabolic drivers. Short-chain fatty acid (SCFA) metabolism influences tumor progression, yet its role in melanoma subtypes and clinical outcomes is unclear. This study aims to delineate melanoma subgroups driven by SCFA metabolic dysregulation and identify mechanisms underlying their aggressiveness.</p><p><strong>Methods: </strong>Using non-negative matrix factorization (NMF), we clustered 468 TCGA melanoma samples into six subgroups based on SCFA-related gene sets (GO:0019745, GO:0019746, GO:0006085). Survival, differential expression, and pathway analyses were performed to characterize high-risk subgroups. Key drivers were validated via CRISPR/Cas9, siRNA knockdown, and immunohistochemistry. Single-cell RNA-seq (GSE215120) and spatial transcriptomics elucidated tumor-microenvironment crosstalk. Metabolic profiling, Seahorse assays, and myeloid-specific GAS6 knockout models were employed to dissect mechanisms.</p><p><strong>Results: </strong>NMF clustering revealing a high-risk subtype (Group 6) with dysregulated short-chain fatty acid (SCFA) metabolism and poor survival. Group 6 exhibited upregulation of GLTP and RAPGEFL1, enrichment in melanogenesis, Hippo signaling, and skin/lipid metabolism pathways. Through integrative analysis, TEAD3 emerged as a key risk driver, with high expression correlating with poor prognosis. Functional validation demonstrated that TEAD3 knockout suppressed melanoma proliferation, migration, and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Single-cell RNA sequencing of acral melanoma revealed TEAD3-enriched tumor cells interacting with M2 macrophages via the GAS6-TYRO3 axis. Mechanistically, GAS6 + macrophages exhibited hypermetabolic phenotypes (elevated glycolysis/OXPHOS) that fueled GAS6 secretion. GAS6-TYRO3 signaling in TEAD3 + cells drove tumor aggressiveness by rewiring propionate metabolism, inducing methylmalonic acid accumulation via Mmut upregulation. Targeting this axis in myeloid-specific GAS6 knockout mice enhanced anti-PD-1 efficacy, boosting CD8 + T cell infiltration and survival.</p><p><strong>Conclusion: </strong>We define a TEAD3-driven melanoma subtype reliant on SCFA metabolic reprogramming and M2 macrophage crosstalk. The GAS6-TYRO3 axis and Mmut-mediated methylmalonic acid accumulation represent actionable targets. Combining myeloid-GAS6 ablation with immune checkpoint blockade overcomes therapy resistance, offering a precision strategy for high-risk melanoma.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"279"},"PeriodicalIF":12.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03542-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Melanoma, a highly heterogeneous malignancy, remains refractory to conventional therapies due to poorly defined molecular and metabolic drivers. Short-chain fatty acid (SCFA) metabolism influences tumor progression, yet its role in melanoma subtypes and clinical outcomes is unclear. This study aims to delineate melanoma subgroups driven by SCFA metabolic dysregulation and identify mechanisms underlying their aggressiveness.
Methods: Using non-negative matrix factorization (NMF), we clustered 468 TCGA melanoma samples into six subgroups based on SCFA-related gene sets (GO:0019745, GO:0019746, GO:0006085). Survival, differential expression, and pathway analyses were performed to characterize high-risk subgroups. Key drivers were validated via CRISPR/Cas9, siRNA knockdown, and immunohistochemistry. Single-cell RNA-seq (GSE215120) and spatial transcriptomics elucidated tumor-microenvironment crosstalk. Metabolic profiling, Seahorse assays, and myeloid-specific GAS6 knockout models were employed to dissect mechanisms.
Results: NMF clustering revealing a high-risk subtype (Group 6) with dysregulated short-chain fatty acid (SCFA) metabolism and poor survival. Group 6 exhibited upregulation of GLTP and RAPGEFL1, enrichment in melanogenesis, Hippo signaling, and skin/lipid metabolism pathways. Through integrative analysis, TEAD3 emerged as a key risk driver, with high expression correlating with poor prognosis. Functional validation demonstrated that TEAD3 knockout suppressed melanoma proliferation, migration, and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Single-cell RNA sequencing of acral melanoma revealed TEAD3-enriched tumor cells interacting with M2 macrophages via the GAS6-TYRO3 axis. Mechanistically, GAS6 + macrophages exhibited hypermetabolic phenotypes (elevated glycolysis/OXPHOS) that fueled GAS6 secretion. GAS6-TYRO3 signaling in TEAD3 + cells drove tumor aggressiveness by rewiring propionate metabolism, inducing methylmalonic acid accumulation via Mmut upregulation. Targeting this axis in myeloid-specific GAS6 knockout mice enhanced anti-PD-1 efficacy, boosting CD8 + T cell infiltration and survival.
Conclusion: We define a TEAD3-driven melanoma subtype reliant on SCFA metabolic reprogramming and M2 macrophage crosstalk. The GAS6-TYRO3 axis and Mmut-mediated methylmalonic acid accumulation represent actionable targets. Combining myeloid-GAS6 ablation with immune checkpoint blockade overcomes therapy resistance, offering a precision strategy for high-risk melanoma.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.