Masami M Tamechika, Hiroyuki Yamada, Shigeho Ijiri, Yoichi Yusa
{"title":"The effects of parasitism on sex allocation of a hermaphroditic acorn barnacle.","authors":"Masami M Tamechika, Hiroyuki Yamada, Shigeho Ijiri, Yoichi Yusa","doi":"10.1093/jeb/voaf007","DOIUrl":"10.1093/jeb/voaf007","url":null,"abstract":"<p><p>Sex allocation theory predicts the adaptive allocation of resources to male versus female reproduction in simultaneous hermaphrodites in response to individual characteristics or environmental factors. Because parasites uptake resources from their hosts, their presence could affect the sex allocation of the hosts. We investigated the effects of infestation status and infestation intensity by the rhizocephalan barnacle Boschmaella japonica on reproduction, including sex allocation, of the host intertidal barnacle Chthamalus challengeri. Feeding activity was also examined as a factor related to resource intake. Both male and female reproductive investment decreased with increasing parasite infestation, and the sex allocation of large-infested hosts was more male-biased than that of large uninfested hosts. Moreover, in contrast to the model prediction that male investment does not change under resource limitation, male investment decreased in infested hosts whose resources were taken by parasites. This reduction in male investment could be explained by changes in mating group size, since infested hosts have shorter penises and consequently are able to access fewer mating partners.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"417-429"},"PeriodicalIF":2.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex H Waugh, Michael A Catto, Samuel V Arsenault, Sasha Kay, Kenneth G Ross, Brendan G Hunt
{"title":"Molecular underpinnings of plasticity and supergene-mediated polymorphism in fire ant queens.","authors":"Alex H Waugh, Michael A Catto, Samuel V Arsenault, Sasha Kay, Kenneth G Ross, Brendan G Hunt","doi":"10.1093/jeb/voae159","DOIUrl":"10.1093/jeb/voae159","url":null,"abstract":"<p><p>Characterizing molecular underpinnings of plastic traits and balanced polymorphisms represent 2 important goals of evolutionary biology. Fire ant gynes (pre-reproductive queens) provide an ideal system to study potential links between these phenomena because they exhibit both supergene-mediated polymorphism and nutritional plasticity in weight and colony-founding behaviour. Gynes with the inversion supergene haplotype are lightweight and depend on existing workers to initiate reproduction. Gynes with only the ancestral, non-inverted gene arrangement accumulate more nutrient reserves as adults and, in a distinct colony-founding behaviour, initiate reproduction without help from workers. However, when such gynes overwinter in the natal nest they develop an environmentally induced lightweight phenotype and colony-founding behaviour, similar to gynes with the inversion haplotype that have not overwintered. To evaluate the extent of shared mechanisms between plasticity and balanced polymorphism in fire ant gyne traits, we assessed whether genes with expression variation linked to overwintering plasticity may be affected by the evolutionary divergence between supergene haplotypes. To do so, we first compared transcriptional profiles of brains and ovaries from overwintered and non-overwintered gynes to identify plasticity-associated genes. These genes were enriched for metabolic and behavioural functions. Next, we compared plasticity-associated genes to those differentially expressed by supergene genotype, revealing a significant overlap of the 2 sets in ovarian tissues. We also identified sequence substitutions between supergene variants of multiple plasticity-associated genes, consistent with a scenario in which an ancestrally plastic phenotype responsive to an environmental condition became increasingly genetically regulated.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"333-344"},"PeriodicalIF":2.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily K Fowler, Lucy A Friend, Emily R Churchill, Douglas W Yu, Marco Archetti, Andrew F G Bourke, Amanda Bretman, Tracey Chapman
{"title":"Female oviposition decisions are influenced by the microbial environment.","authors":"Emily K Fowler, Lucy A Friend, Emily R Churchill, Douglas W Yu, Marco Archetti, Andrew F G Bourke, Amanda Bretman, Tracey Chapman","doi":"10.1093/jeb/voaf004","DOIUrl":"10.1093/jeb/voaf004","url":null,"abstract":"<p><p>In ovipositing animals, egg placement decisions can be key determinants of offspring survival. One oviposition strategy reported across taxa is laying eggs in clusters. In some species, mothers provision eggs with diffusible defence compounds, such as antimicrobials, raising the possibility of public good benefits arising from egg clustering. Here we report that Drosophila melanogaster females frequently lay eggs in mixed-maternity clusters. We tested two hypotheses for potential drivers of this oviposition behaviour: (i) the microbial environment affects fecundity and egg placement in groups of females; (ii) eggs exhibit antimicrobial activity. The results partially supported the first hypothesis. Females reduced egg laying but did not alter egg clustering, on non-sterile substrates that had been naturally colonized with microbes from the environment. However, oviposition remained unaffected when the substrate community consisted of commensal (fly-associated) microbes. The second hypothesis was not supported. There was no evidence of antimicrobial activity, either in whole eggs or in soluble egg-surface material. In conclusion, while we found no behavioural or physiological evidence that egg clustering decisions are shaped by the opportunity to share antimicrobials, females are sensitive to their microbial environment and can adjust egg-laying rates accordingly.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"379-390"},"PeriodicalIF":2.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuel Perini, Kerstin Johannesson, Roger K Butlin, Anja M Westram
{"title":"Short INDELs and SNPs as markers of evolutionary processes in hybrid zones.","authors":"Samuel Perini, Kerstin Johannesson, Roger K Butlin, Anja M Westram","doi":"10.1093/jeb/voaf002","DOIUrl":"10.1093/jeb/voaf002","url":null,"abstract":"<p><p>Polymorphic short insertions and deletions (INDELs ≤ 50 bp) are abundant, although less common than single nucleotide polymorphisms (SNPs). Evidence from model organisms shows INDELs to be more strongly influenced by purifying selection than SNPs. Partly for this reason, INDELs are rarely used as markers for demographic processes or to detect divergent selection. Here, we compared INDELs and SNPs in the intertidal snail Littorina saxatilis, focussing on hybrid zones between ecotypes, in order to test the utility of INDELs in the detection of divergent selection. We computed INDEL and SNP site frequency spectra using capture sequencing data. We assessed the impact of divergent selection by analyzing allele frequency clines across habitat boundaries. We also examined the influence of GC-biased gene conversion because it may be confounded with signatures of selection. We show evidence that short INDELs are affected more by purifying selection than SNPs, but part of the observed site frequency spectra difference can be attributed to GC-biased gene conversion. We did not find a difference in the impact of divergent selection between short INDELs and SNPs. Short INDELs and SNPs were similarly distributed across the genome and so are likely to respond to indirect selection in the same way. A few regions likely affected by divergent selection were revealed by INDELs and not by SNPs. Short INDELs can be useful (additional) genetic markers helping to identify genomic regions important for adaptation and population divergence.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"367-378"},"PeriodicalIF":2.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon J Connolly, Kate M Curtis, Cor J Vink, Christina J Painting
{"title":"Mating behaviour influences the direction and geographic extent of introgression in New Zealand fishing spiders (Dolomedes).","authors":"Simon J Connolly, Kate M Curtis, Cor J Vink, Christina J Painting","doi":"10.1093/jeb/voae147","DOIUrl":"10.1093/jeb/voae147","url":null,"abstract":"<p><p>Introgression is a highly influential process in evolution, where genes flow between species that are not fully reproductively isolated. Studies on introgression often focus on describing gene transfer and environmental changes that facilitate the meeting of species. However, the impact of mating systems and behaviour that facilitate gene transfer is less well-known. Dolomedes aquaticus and D. minor are sister species of fishing spiders undergoing one-way, geographically limited mitochondrial introgression, making them an excellent case study for the factors that promote and limit introgression. We used a combination of field observations and crossing experiments to systematically investigate potential prefertilization barriers that could limit introgression and explain the one-way and geographic barriers to introgression in these species. We found that habitat overlap and timing of reproductive maturity were not likely to be important limiting factors to introgression. However, behaviour was an important factor, with male mate choice being implicated in the geographic limitation, and female mate choice being implicated in the one-way limitation. Our results show the importance of using behavioural approaches in the investigation of introgression.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"291-304"},"PeriodicalIF":2.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142734386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Times needed to evolve mating cues under allopatry and parapatry.","authors":"Richard M Sibly, Robert N Curnow","doi":"10.1093/jeb/voae160","DOIUrl":"10.1093/jeb/voae160","url":null,"abstract":"<p><p>The time needed for the evolution of mating cues that distinguish species, such as species-specific songs or plumage coloration in birds, has received little attention. Aiming to gain some understanding of the timing of the evolutionary process we here present models of how mating cues evolve in populations split into subpopulations between which there may (parapatry) or may not (allopatry) be migration. Mating cues can be either neutral or directly selected. In models in which evolution commences with a substitution at a neutral mating-cue locus, under allopatry there is no selection on the mating cue, but under parapatry, selection may be induced on the mating cue by the selective conditions in the subpopulations, and the migration rates between them. We use simulation to calculate how selection pressures on mating cues then depend on selective conditions in subpopulations and migration rates between them. In the second part of the paper, we demonstrate quantitatively how the resulting selection pressures on new mating cues together with mutation rate affect speciation time. Our results suggest that species-specific songs or plumage colorations that are selectively neutral evolve faster under parapatry than under allopatry, and this may explain the short speciation times that are sometimes reported. Although our modelling assumptions are restrictive so that caution is needed in comparing the results to empirical data, we hope that our main results, showing quantitatively how parapatry can reduce speciation times, will encourage further work relaxing model assumptions or studying different models of mate choice.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"345-352"},"PeriodicalIF":2.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of sex determination in African cichlids reveals lack of fixed sex chromosomes in wild populations.","authors":"Sophie Helen Smith, Sandra Kukowka, Astrid Böhne","doi":"10.1093/jeb/voaf013","DOIUrl":"https://doi.org/10.1093/jeb/voaf013","url":null,"abstract":"<p><p>Sex chromosomes are theorised to stop recombining and become fixed, yet many taxa show ambiguous genomic signals of sex consistent with either continuous recombination or sex chromosome turnover. Elucidating the basis of sex chromosome conservation or alternatively, turnover, requires comparative studies among natural populations with shared evolutionary histories. The African Great Lake radiations of cichlid fishes display an outstanding propensity to rapidly evolve novel sex-linked regions, yet older cichlid lineages external to these radiations seem to show conservation of a few sex chromosomes. Here, we studied sex-determining regions of species uniquely representing two older lineages within Lake Tanganyika; Oreochromis tanganicae (Oreochromini) and Tylochromis polylepis (Tylochromini). Using a combined SNP- and kmer-based approach, we confirm a ZW system on linkage group (LG) 3 in O. tanganicae, but not the previously proposed sex-determining gene. However, in T. polylepis, no clear region of sex-association could be identified, although kmer-based analyses point towards LG12 as a candidate sex chromosome. Additionally, we investigated four other species from older, non-East African radiation lineages and confirm LG3 to be frequently associated with sex, but also find stronger signals of sex association on different chromosomes not previously discovered. Combined, these results suggest that homomorphic sex chromosomes are a feature of African cichlids at large. LG3 frequently harbours regions of sex-linkage, but is often polygenic with more strongly sex-linked regions on other chromosomes, possibly denoting its ancestral function as sex-determining across African cichlids, that leaves traces as novel sex-determining regions emerge. Our investigation captures this in a phylogenetic context, from emergence, to fixation, or turnover to a new sex chromosome.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mónica Arias, Lis Behrendt, Lyn Dreßler, Adelina Raka, Charles Perrier, Marianne Elias, Doris Gomez, Julien P Renoult, Cynthia Tedore
{"title":"Testing the equivalency of human \"predators\" and deep neural networks in the detection of cryptic moths.","authors":"Mónica Arias, Lis Behrendt, Lyn Dreßler, Adelina Raka, Charles Perrier, Marianne Elias, Doris Gomez, Julien P Renoult, Cynthia Tedore","doi":"10.1093/jeb/voae146","DOIUrl":"10.1093/jeb/voae146","url":null,"abstract":"<p><p>Researchers have shown growing interest in using deep neural networks (DNNs) to efficiently test the effects of perceptual processes on the evolution of colour patterns and morphologies. Whether this is a valid approach remains unclear, as it is unknown whether the relative detectability of ecologically relevant stimuli to DNNs actually matches that of biological neural networks. To test this, we compare image classification performance by humans and 6 DNNs (AlexNet, VGG-16, VGG-19, ResNet-18, SqueezeNet, and GoogLeNet) trained to detect artificial moths on tree trunks. Moths varied in their degree of crypsis, conferred by different sizes and spatial configurations of transparent wing elements. Like humans, four of six DNN architectures found moths with larger transparent elements harder to detect. However, humans and only one DNN architecture (GoogLeNet) found moths with transparent elements touching one side of the moth's outline harder to detect than moths with untouched outlines. When moths took up a smaller proportion of the image (i.e., were viewed from further away), the camouflaging effect of transparent elements touching the moth's outline was reduced for DNNs but enhanced for humans. Viewing distance can thus interact with camouflage type in opposing directions in humans and DNNs, which warrants a deeper investigation of viewing distance/size interactions with a broader range of stimuli. Overall, our results suggest that human and DNN responses had some similarities, but not enough to justify widespread use of DNNs for studies of camouflage.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"214-224"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142734387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Allometry, sexual dimorphism, and Rensch's rule in pygmy and marbled newts.","authors":"Ana Ivanović, Tijana Vučić, Jan W Arntzen","doi":"10.1093/jeb/voae150","DOIUrl":"10.1093/jeb/voae150","url":null,"abstract":"<p><p>Allometry, the relationship between body size and the size of other body parts, explains a significant portion of morphological variation across biological levels, at the individual level, within and between species. We used external morphology measurements of 6 Triturus (sub)species, focussing on the T. marmoratus species group, to explore allometric parameters within and between taxa. We tested for allometry of sexual size dimorphism in body, head, and limb dimensions and examined whether intraspecific allometry directed evolutionary allometry, as described by Rensch's rule. Our findings indicated that female-biased trunk and head dimensions exhibited positive allometry, whereas male-biased limb dimensions showed isometric relationships or weak correlations with body size. Morphological divergences between sexes occurred along common allometric slopes, most often through changes in the intercepts. Among taxon, comparisons revealed that (sub)species diverged in the direction of the allometric slopes. In line with Rensch's rule, sexual size dimorphism in female-biased traits significantly decreased as overall body size increased. However, the observed intraspecific allometric parameters deviated from theoretical expectations because the steepest allometric slopes for female-biased traits were recorded in the larger species. Our results contribute to understanding the dynamics of allometric relationships and sexual dimorphism in amphibians and provide a robust baseline for future comparative analyses.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"240-250"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew P Duitsman, Adam M Bomar, Jerbrea Powell, Kelly A Dyer
{"title":"Postmating prezygotic isolation occurs at two levels of divergence in Drosophila recens and D. subquinaria.","authors":"Andrew P Duitsman, Adam M Bomar, Jerbrea Powell, Kelly A Dyer","doi":"10.1093/jeb/voae145","DOIUrl":"10.1093/jeb/voae145","url":null,"abstract":"<p><p>Identifying the presence and strength of reproductive isolating barriers is necessary to understand how species form and then remain distinct in the face of ongoing gene flow. Here, we study reproductive isolation at two stages of the speciation process in the closely related mushroom-feeding species Drosophila recens and Drosophila subquinaria. We assess 3 isolating barriers that occur after mating, including the number of eggs laid, the proportion of eggs laid that hatched, and the number of adult offspring from a single mating. First, all 3 reproductive barriers are present between D. recens females and D. subquinaria males, which are at the late stages of speciation but still produce fertile daughters through which gene flow can occur. There is no evidence for geographic variation in any of these traits, concurrent with patterns of behavioural isolation. Second, all 3 of these reproductive barriers are strong between geographically distant conspecific populations of D. subquinaria, which are in the early stages of speciation and show genetic differentiation and asymmetric behavioural discrimination. The reduction in the number of eggs laid is asymmetric, consistent with patterns in behavioural isolation, and suggests the evolution of postmating prezygotic isolation due to cascade reinforcement against mating with D. recens. In summary, not only may postmating prezygotic reproductive barriers help maintain isolation between D. recens and D. subquinaria, but they may also drive the earliest stages of isolation within D. subquinaria.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"202-213"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}