npj Unconventional Computing最新文献

筛选
英文 中文
Solving Boltzmann optimization problems with deep learning 用深度学习解决波尔兹曼优化问题
npj Unconventional Computing Pub Date : 2024-08-05 DOI: 10.1038/s44335-024-00005-1
Fiona Knoll, John Daly, Jess Meyer
{"title":"Solving Boltzmann optimization problems with deep learning","authors":"Fiona Knoll, John Daly, Jess Meyer","doi":"10.1038/s44335-024-00005-1","DOIUrl":"10.1038/s44335-024-00005-1","url":null,"abstract":"Decades of exponential scaling in high-performance computing (HPC) efficiency is coming to an end. Transistor-based logic in complementary metal-oxide semiconductor (CMOS) technology is approaching physical limits beyond which further miniaturization will be impossible. Future HPC efficiency gains will necessarily rely on new technologies and paradigms of computing. The Ising model shows particular promise as a future framework for highly energy-efficient computation. Ising systems are able to operate at energies approaching thermodynamic limits for energy consumption of computation. Ising systems can function as both logic and memory. Thus, they have the potential to significantly reduce energy costs inherent to CMOS computing by eliminating costly data movement. The challenge in creating Ising-based hardware is in optimizing useful circuits that produce correct results on fundamentally nondeterministic hardware. The contribution of this paper is a novel machine learning approach, a combination of deep neural networks and random forests, for efficiently solving optimization problems that minimize sources of error in the Ising model. In addition, we provide a process to express a Boltzmann probability optimization problem as a supervised machine learning problem.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00005-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental demonstration of magnetic tunnel junction-based computational random-access memory 基于磁隧道结的计算随机存取存储器的实验演示。
npj Unconventional Computing Pub Date : 2024-07-25 DOI: 10.1038/s44335-024-00003-3
Yang Lv, Brandon R. Zink, Robert P. Bloom, Hüsrev Cılasun, Pravin Khanal, Salonik Resch, Zamshed Chowdhury, Ali Habiboglu, Weigang Wang, Sachin S. Sapatnekar, Ulya Karpuzcu, Jian-Ping Wang
{"title":"Experimental demonstration of magnetic tunnel junction-based computational random-access memory","authors":"Yang Lv, Brandon R. Zink, Robert P. Bloom, Hüsrev Cılasun, Pravin Khanal, Salonik Resch, Zamshed Chowdhury, Ali Habiboglu, Weigang Wang, Sachin S. Sapatnekar, Ulya Karpuzcu, Jian-Ping Wang","doi":"10.1038/s44335-024-00003-3","DOIUrl":"10.1038/s44335-024-00003-3","url":null,"abstract":"The conventional computing paradigm struggles to fulfill the rapidly growing demands from emerging applications, especially those for machine intelligence because much of the power and energy is consumed by constant data transfers between logic and memory modules. A new paradigm, called “computational random-access memory (CRAM),” has emerged to address this fundamental limitation. CRAM performs logic operations directly using the memory cells themselves, without having the data ever leave the memory. The energy and performance benefits of CRAM for both conventional and emerging applications have been well established by prior numerical studies. However, there is a lack of experimental demonstration and study of CRAM to evaluate its computational accuracy, which is a realistic and application-critical metric for its technological feasibility and competitiveness. In this work, a CRAM array based on magnetic tunnel junctions (MTJs) is experimentally demonstrated. First, basic memory operations, as well as 2-, 3-, and 5-input logic operations, are studied. Then, a 1-bit full adder with two different designs is demonstrated. Based on the experimental results, a suite of models has been developed to characterize the accuracy of CRAM computation. Scalar addition, multiplication, and matrix multiplication, which are essential building blocks for many conventional and machine intelligence applications, are evaluated and show promising accuracy performance. With the confirmation of MTJ-based CRAM’s accuracy, there is a strong case that this technology will have a significant impact on power- and energy-demanding applications of machine intelligence.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Negative photo conductivity triggered with visible light in wide bandgap oxide-based optoelectronic crossbar memristive array for photograph sensing and neuromorphic computing applications 用可见光触发宽带隙氧化物光电横条忆阻阵中的负光电导,用于照片传感和神经形态计算应用
npj Unconventional Computing Pub Date : 2024-07-25 DOI: 10.1038/s44335-024-00001-5
Dayanand Kumar, Hanrui Li, Amit Singh, Manoj Kumar Rajbhar, Abdul Momin Syed, Hoonkyung Lee, Nazek El-Atab
{"title":"Negative photo conductivity triggered with visible light in wide bandgap oxide-based optoelectronic crossbar memristive array for photograph sensing and neuromorphic computing applications","authors":"Dayanand Kumar, Hanrui Li, Amit Singh, Manoj Kumar Rajbhar, Abdul Momin Syed, Hoonkyung Lee, Nazek El-Atab","doi":"10.1038/s44335-024-00001-5","DOIUrl":"10.1038/s44335-024-00001-5","url":null,"abstract":"Photoresponsivity studies of wide-bandgap oxide-based devices have emerged as a vibrant and popular research area. Researchers have explored various material systems in their quest to develop devices capable of responding to illumination. In this study, we engineered a mature wide-bandgap oxide-based bilayer heterostructure synaptic memristor to emulate the human brain for applications in neuromorphic computing and photograph sensing. The device exhibits advanced electric and electrophotonic synaptic functions, such as long-term potentiation (LTP), long-term depression (LTD), and paired-pulse facilitation (PPF), by applying successive electric and photonic pulses. Moreover, the device exhibits exceptional electrical SET and photonic RESET endurance, maintaining its stability for a minimum of 1200 cycles without any degradation. Density functional theory calculations of the band structures provide insights into the conduction mechanism of the device. Based on this memristor array, we developed an autoencoder and convolutional neural network for noise reduction and image recognition tasks, which achieves a peak signal-to-noise ratio of 562 and high accuracy of 84.23%, while consuming lower energy by four orders of magnitude compared with the Tesla P40 GPU. This groundbreaking research not only opens doors for the integration of our device into image processing but also represents a significant advancement in the realm of in-memory computing and photograph-sensing features in a single cell.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00001-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PIM GPT a hybrid process in memory accelerator for autoregressive transformers PIM GPT 自回归变压器内存混合过程加速器
npj Unconventional Computing Pub Date : 2024-07-25 DOI: 10.1038/s44335-024-00004-2
Yuting Wu, Ziyu Wang, Wei D. Lu
{"title":"PIM GPT a hybrid process in memory accelerator for autoregressive transformers","authors":"Yuting Wu, Ziyu Wang, Wei D. Lu","doi":"10.1038/s44335-024-00004-2","DOIUrl":"10.1038/s44335-024-00004-2","url":null,"abstract":"Decoder-only Transformer models such as Generative Pre-trained Transformers (GPT) have demonstrated exceptional performance in text generation by autoregressively predicting the next token. However, the efficiency of running GPT on current hardware systems is bounded by low compute-to-memory-ratio and high memory access. In this work, we propose a Process-in-memory (PIM) GPT accelerator, PIM-GPT, which achieves end-to-end acceleration of GPT inference with high performance and high energy efficiency. PIM-GPT leverages DRAM-based PIM designs for executing multiply-accumulate (MAC) operations directly in the DRAM chips, eliminating the need to move matrix data off-chip. Non-linear functions and data communication are supported by an application specific integrated chip (ASIC). At the software level, mapping schemes are designed to maximize data locality and computation parallelism. Overall, PIM-GPT achieves 41 − 137 × , 631 − 1074 × speedup and 123 − 383 × , 320 − 602 × energy efficiency over GPU and CPU baseline on 8 GPT models with up to 1.4 billion parameters.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00004-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141805370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spiking neural networks for nonlinear regression of complex transient signals on sustainable neuromorphic processors 可持续神经形态处理器上用于复杂瞬态信号非线性回归的尖峰神经网络
npj Unconventional Computing Pub Date : 2024-07-25 DOI: 10.1038/s44335-024-00002-4
Marcus Stoffel, Saurabh Balkrishna Tandale
{"title":"Spiking neural networks for nonlinear regression of complex transient signals on sustainable neuromorphic processors","authors":"Marcus Stoffel, Saurabh Balkrishna Tandale","doi":"10.1038/s44335-024-00002-4","DOIUrl":"10.1038/s44335-024-00002-4","url":null,"abstract":"In recent years, spiking neural networks were introduced in science as the third generation of artificial neural networks leading to a tremendous energy saving on neuromorphic processors. This sustainable effect is due to the sparse nature of signal processing in-between spiking neurons leading to much less scalar multiplications as in second-generation networks. The spiking neuron’s efficiency is even more pronounced by their inherently recurrent nature being useful for recursive function approximations. We believe that there is a need for a general regression framework for SNNs to explore the high potential of neuromorphic computations. However, besides many classification studies with SNNs in the literature, nonlinear neuromorphic regression analysis represents a gap in research. Hence, we propose a general SNN approach for function approximation applicable for complex transient signal processing taking surrogate gradients due to the discontinuous spike representation into account. However, to pay attention to the need for high memory access during deep SNN network communications, additional spiking Legrendre Memory Units are introduced in the neuromorphic architecture. Path-dependencies and evolutions of signals can be tackled in this way. Furthermore, interfaces between real physical and binary spiking values are necessary. Following this intention, a hybrid approach is introduced, exhibiting an autoencoding strategy between dense and spiking layers. However, to verify the presented framework of nonlinear regression for a wide spectrum of scientific purposes, we see the need for obtaining realistic complex transient short-time signals by an extensive experimental set-up. Hence, a measurement technique for benchmark experiments is proposed with high-frequency oscillations measured by capacitive and piezoelectric sensors resulting in wave propagations and inelastic solid deformations to be predicted by the developed SNN regression analysis. Hence, the proposed nonlinear regression framework can be deployed to a wide range of scientific and technical applications.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00002-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141802813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信