npj SpintronicsPub Date : 2024-09-02DOI: 10.1038/s44306-024-00053-0
Theodoros Adamantopoulos, Maximilian Merte, Frank Freimuth, Dongwook Go, Lishu Zhang, Marjana Ležaić, Wanxiang Feng, Yugui Yao, Jairo Sinova, Libor Šmejkal, Stefan Blügel, Yuriy Mokrousov
{"title":"Spin and orbital magnetism by light in rutile altermagnets","authors":"Theodoros Adamantopoulos, Maximilian Merte, Frank Freimuth, Dongwook Go, Lishu Zhang, Marjana Ležaić, Wanxiang Feng, Yugui Yao, Jairo Sinova, Libor Šmejkal, Stefan Blügel, Yuriy Mokrousov","doi":"10.1038/s44306-024-00053-0","DOIUrl":"10.1038/s44306-024-00053-0","url":null,"abstract":"While the understanding of altermagnetism is still at a very early stage, it is expected to play a role in various fields of condensed matter research, for example spintronics, caloritronics and superconductivity. In the field of optical magnetism, it is still unclear to which extent altermagnets as a class can exhibit a distinct behavior. Here we choose RuO2, a prototype metallic altermagnet with a giant spin splitting, and CoF2, an experimentally known insulating altermagnet, to study the light-induced magnetism in rutile altermagnets from first-principles. We demonstrate that in the non-relativisic limit the allowed sublattice-resolved orbital response exhibits symmetries, imposed by altermagnetism, which lead to a drastic canting of light-induced moments. On the other hand, we find that inclusion of spin-orbit interaction enhances the overall effect drastically, introduces a significant anisotropy with respect to the light polarization and strongly suppresses the canting of induced moments. Remarkably, we observe that the moments induced by linearly-polarized laser pulses in light altermagnets can even exceed in magnitude those predicted for heavy ferromagnets exposed to circularly polarized light. By resorting to microscopic tools we interpret our results in terms of the altermagnetic spin splittings and of their reciprocal space distribution. Based on our findings, we speculate that optical excitations may provide a unique tool to switch and probe the magnetic state of rutile altermagnets.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00053-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced exchange bias in all-oxide heterostructures with cation-ordered ferrimagnetic double-perovskite","authors":"Xiaofu Qiu, Zelin Wang, Hetian Chen, Yuhan Liang, Xiaoyu Jiang, Yujun Zhang, Jing Ma, Fangyuan Zhu, Tianxiang Nan, Zhen Chen, Di Yi","doi":"10.1038/s44306-024-00051-2","DOIUrl":"10.1038/s44306-024-00051-2","url":null,"abstract":"The realization and control of exchange bias (EB) are highly desirable for spintronic applications. All-oxide heterostructures comprised of ferromagnetic and antiferromagnetic/multiferroic oxides provide an ideal platform to enable the electric-field control of EB, promising for energy-efficient memory and logic devices. However, the low block temperature (TB) and small bias field (HEB) hinder further advances towards room-temperature applications. Here, we report an alternative approach to enhance the interface-induced EB by using ferrimagnetic double-perovskite with B-site cation ordering. In heterostructures comprised of double-perovskite Sr2FeReO6 (SFRO) and LaFeO3 (LFO), a high TB (about 250 K) and large HEB are observed, which is significantly larger than the counterparts with LFO and ferromagnetic oxides. Further analysis suggests that the cation-ordering and ferrimagnetic spin structure of the double-perovskite could contribute significantly to the enhanced exchanged bias when interfacing with G-type antiferromagnets. Our results open a new avenue for developing all-oxides heterostructures for future magnetic technologies.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00051-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj SpintronicsPub Date : 2024-08-13DOI: 10.1038/s44306-024-00046-z
Ruben Dario Gonzalez Betancourt, Jan Zubáč, Kevin Geishendorf, Philipp Ritzinger, Barbora Růžičková, Tommy Kotte, Jakub Železný, Kamil Olejník, Gunther Springholz, Bernd Büchner, Andy Thomas, Karel Výborný, Tomas Jungwirth, Helena Reichlová, Dominik Kriegner
{"title":"Anisotropic magnetoresistance in altermagnetic MnTe","authors":"Ruben Dario Gonzalez Betancourt, Jan Zubáč, Kevin Geishendorf, Philipp Ritzinger, Barbora Růžičková, Tommy Kotte, Jakub Železný, Kamil Olejník, Gunther Springholz, Bernd Büchner, Andy Thomas, Karel Výborný, Tomas Jungwirth, Helena Reichlová, Dominik Kriegner","doi":"10.1038/s44306-024-00046-z","DOIUrl":"10.1038/s44306-024-00046-z","url":null,"abstract":"Recently, MnTe was established as an altermagnetic material that hosts spin-polarized electronic bands as well as anomalous transport effects like the anomalous Hall effect. In addition to these effects arising from altermagnetism, MnTe also hosts other magnetoresistance effects. Here, we study the manipulation of the magnetic order by an applied magnetic field and its impact on the electrical resistivity. In particular, we establish which components of anisotropic magnetoresistance are present when the magnetic order is rotated within the hexagonal basal plane. Our experimental results, which are in agreement with our symmetry analysis of the magnetotransport components, showcase the existence of an anisotropic magnetoresistance linked to both the relative orientation of current and magnetic order, as well as crystal and magnetic order. Altermagnetism is manifested as a three-fold component in the transverse magnetoresistance which arises due to the anomalous Hall effect.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00046-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj SpintronicsPub Date : 2024-08-12DOI: 10.1038/s44306-024-00050-3
Takayuki Shiino, Phuoc Cao Van, Jong-Guk Choi, Geunwoo Kim, Jong-Ryul Jeong, Byong-Guk Park
{"title":"Unconventional angular dependence of spin-orbit torque-induced harmonic Hall resistance in Pt/YIG bilayers","authors":"Takayuki Shiino, Phuoc Cao Van, Jong-Guk Choi, Geunwoo Kim, Jong-Ryul Jeong, Byong-Guk Park","doi":"10.1038/s44306-024-00050-3","DOIUrl":"10.1038/s44306-024-00050-3","url":null,"abstract":"Spin-orbit torque (SOT), arising from spin-orbit coupling-induced spin currents, provides efficient control of magnetization. SOT characterization involving harmonic Hall resistances is typically done in low-current regimes, distinct from high-current regimes, where SOT-induced magnetization switching occurs. In this study, we investigate azimuthal angle (ϕ)-dependent harmonic Hall resistances of a Pt/yttrium iron garnet (YIG) layer across a wide range of measurement currents. Under low-current conditions, conventional ϕ-dependent Hall resistances are observed; the first harmonic Hall resistance exhibits sin 2ϕ behavior and the second harmonic Hall resistance comprises cos ϕ and cos 3ϕ terms. Interestingly, with increasing current, higher-order angular-dependent terms become non-negligible, referring to the sin 4ϕ and sin 6ϕ terms for the first harmonic and the cos 5ϕ and cos 7ϕ terms for the second harmonic Hall resistances. We attribute this unconventional angular dependence to the nonlinear response of magnetization direction to SOT, emphasizing its relevance to understanding the magnetization dynamics during SOT-induced switching under large currents.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00050-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj SpintronicsPub Date : 2024-08-02DOI: 10.1038/s44306-024-00045-0
Taekoo Oh, Naoto Nagaosa
{"title":"Unraveling the dynamics of magnetization in topological insulator-ferromagnet heterostructures via spin-orbit torque","authors":"Taekoo Oh, Naoto Nagaosa","doi":"10.1038/s44306-024-00045-0","DOIUrl":"10.1038/s44306-024-00045-0","url":null,"abstract":"Spin–orbit coupling is a relativistic effect coupling the orbital angular momentum with the spin, which determines the physical properties of condensed matter. For instance, the spin–orbit coupling strongly influences spin dynamics, opening the possibility for promising applications. The topological insulator–ferromagnet heterostructure is a typical example exhibiting spin dynamics driven by current-induced spin–orbit torque. Recent observations of the sign flip of Hall conductivity imply that the spin–orbit torque is strong enough to flip magnetization within this heterostructure. Motivated by this, our study elucidates the conditions governing spin flips by studying the magnetization dynamics. We establish that the interplay between spin-anisotropy and spin–orbit torque plays a crucial role in the magnetization dynamics. Furthermore, we categorize various modes of magnetization dynamics, constructing a comprehensive phase diagram across distinct energy scales, damping constants, and applied frequencies. We also consider the effect of a magnetic field on the magnetization dynamics. This research not only offers insights into controlling spin direction but also charts a new pathway to the practical application of spin–orbit coupled systems.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00045-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj SpintronicsPub Date : 2024-08-02DOI: 10.1038/s44306-024-00049-w
Amal Aldarawsheh, Moritz Sallermann, Muayad Abusaa, Samir Lounis
{"title":"Current-driven dynamics of antiferromagnetic skyrmions: from skyrmion Hall effects to hybrid inter-skyrmion scattering","authors":"Amal Aldarawsheh, Moritz Sallermann, Muayad Abusaa, Samir Lounis","doi":"10.1038/s44306-024-00049-w","DOIUrl":"10.1038/s44306-024-00049-w","url":null,"abstract":"Antiferromagnetic (AFM) skyrmions have emerged as a highly promising avenue in the realm of spintronics, particularly for the development of advanced racetrack memory devices. A distinguishing feature of AFM skyrmions is the cancellation of their net topological charge, leading to an anticipated absence of the skyrmion Hall effect (SkHE). Here, we unveil that the latter is finite under the influence of spin-transfer torque, depending on the direction of the injected current impinging on intrinsic AFM skyrmions emerging in Cr/Pd/Fe trilayer on Ir(111) surface. Hinging on first principles combined with atomistic spin dynamics simulations, we identify the origin of the SkHE, which is due to the ellipticity of the skyrmions, and we uncover that FM skyrmions in the underlying Fe layer act as effective traps for AFM skyrmions, confining them and affecting their velocity. These findings hold significant promise for spintronic applications, the design of multi-purpose skyrmion tracks while advancing our understanding of AFM–FM skyrmion interactions and hybrid soliton dynamics in heterostructures.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00049-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj SpintronicsPub Date : 2024-08-02DOI: 10.1038/s44306-024-00048-x
Suhyeok An, Hyeong-Joo Seo, Dongryul Kim, Ki-Seung Lee, Eunchong Baek, Jun-Su Kim, Soobeom Lee, Chun-Yeol You
{"title":"Noncollinear spin texture-driven torque in deterministic spin–orbit torque-induced magnetization switching","authors":"Suhyeok An, Hyeong-Joo Seo, Dongryul Kim, Ki-Seung Lee, Eunchong Baek, Jun-Su Kim, Soobeom Lee, Chun-Yeol You","doi":"10.1038/s44306-024-00048-x","DOIUrl":"10.1038/s44306-024-00048-x","url":null,"abstract":"To reveal the role of chirality on field-free spin–orbit torque (SOT) induced magnetization switching, we propose an existence of z-torque through the formation of noncollinear spin texture during SOT-induced magnetization switching in a laterally two-level perpendicular magnetic anisotropy (PMA) system. For the investigation of torque, we simulate magnetization dynamics in the two-level PMA system with SOT, which generates the noncollinear spin texture. From the spatial distribution of magnetic energy, we reveal the additional z-directional torque contribution in the noncollinear spin texture, which is unexpected in the conventional SOT-induced magnetization switching in collinear spin texture. The z-directional torque originates from the interaction between the chirality of the noncollinear spin texture and the interfacial Dzyaloshinskii-Moriya interaction of the system. Furthermore, the experimental observation of the asymmetric magnetization switching to the direction of the current flow in the two-level PMA system supports our theoretical expectation.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00048-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj SpintronicsPub Date : 2024-07-25DOI: 10.1038/s44306-024-00027-2
J. Godinho, P. K. Rout, R. Salikhov, O. Hellwig, Z. Šobáň, R. M. Otxoa, K. Olejník, T. Jungwirth, J. Wunderlich
{"title":"Antiferromagnetic domain wall memory with neuromorphic functionality","authors":"J. Godinho, P. K. Rout, R. Salikhov, O. Hellwig, Z. Šobáň, R. M. Otxoa, K. Olejník, T. Jungwirth, J. Wunderlich","doi":"10.1038/s44306-024-00027-2","DOIUrl":"10.1038/s44306-024-00027-2","url":null,"abstract":"Antiferromagnetic materials have unique properties due to their alternating spin arrangements. Their compensated magnetic order, robust against external magnetic fields, prevents long-distance crosstalk from stray fields. Furthermore, antiferromagnets with combined parity and time-reversal symmetry enable electrical control and detection of ultrafast exchange-field enhanced spin manipulation up to THz frequencies. Here we report the experimental realization of a nonvolatile antiferromagnetic memory mimicking an artificial synapse, in which the reconfigurable synaptic weight is encoded in the ratio between reversed antiferromagnetic domains. The non-volatile memory is “written” by spin-orbit torque-driven antiferromagnetic domain wall motion and “read” by nonlinear magnetotransport. We show that the absence of long-range interacting stray magnetic fields leads to very reproducible electrical pulse-driven variations of the synaptic weights.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00027-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141806195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj SpintronicsPub Date : 2024-07-25DOI: 10.1038/s44306-024-00043-2
Jesus C. Toscano-Figueroa, Daniel Burrow, Victor H. Guarochico-Moreira, Chengkun Xie, Thomas Thomson, Irina V. Grigorieva, Ivan J. Vera-Marun
{"title":"Oblique spin injection to graphene via geometry controlled magnetic nanowires","authors":"Jesus C. Toscano-Figueroa, Daniel Burrow, Victor H. Guarochico-Moreira, Chengkun Xie, Thomas Thomson, Irina V. Grigorieva, Ivan J. Vera-Marun","doi":"10.1038/s44306-024-00043-2","DOIUrl":"10.1038/s44306-024-00043-2","url":null,"abstract":"We exploit the geometry of magnetic nanowires, which define 1D contacts to an encapsulated graphene channel, to introduce an out-of-plane component in the polarisation of spin carriers. By design, the magnetic nanowires traverse the angled sides of the 2D material heterostructure. Consequently, the easy axis of the nanowires is inclined, and so the local magnetisation is oblique at the injection point. As a result, when performing non-local spin valve measurements we simultaneously observe both switching and spin precession phenomena, implying the spin population possesses both in-plane and out-of-plane polarisation components. By comparing the relative magnitudes of these components, we quantify the angle of the total spin polarisation vector. The extracted angle is consistent with the angle of the nanowire at the graphene interface, evidencing that the effect is a consequence of the device geometry. This simple method of spin-based vector magnetometry provides an alternative technique to define the spin polarisation in 2D spintronic devices.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00043-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum materials for spintronic applications","authors":"Yaqin Guo, Xu Zhang, Zhi Huang, Jinyan Chen, Zijun Luo, Jing Zhang, Jingfeng Li, Zhaowei Zhang, Jinkui Zhao, Xiufeng Han, Hao Wu","doi":"10.1038/s44306-024-00038-z","DOIUrl":"10.1038/s44306-024-00038-z","url":null,"abstract":"Strong correlation, breaking symmetry, band topology, collective excitation, and quantum confinement represent important features of quantum materials. When quantum materials intersect with spintronics, these key features fundamentally enhance the performance of spin-dependent phenomena. In this review, we examine recent advancements in the material requirements for spintronics and investigate the role of quantum effects in enhancing the functionalization of these devices. Current-induced spin-orbit torques offer a versatile tool to manipulate and excite magnetic order, with decoupled read and write paths that excite various types of materials. One crucial aspect of a spintronic device is the transition of writing layers from traditional transport to quantum transport. The recording layer, on the other hand, employs two-dimensional magnetic materials to achieve the ultimate limit of single-layer magnetic storage. Additionally, the utilization of antiferromagnetic and altermagnetic materials makes them suitable for high-density memories with minimal inter-bit dipole interactions and fast writing speed. Exploiting these emerging quantum materials, in spintronic devices and exploring how quantum effects enhance device functionality show significant potential for spintronic applications in the future.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00038-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}