Connecting physics to systems with modular spin-circuits

Kemal Selcuk, Saleh Bunaiyan, Nihal Sanjay Singh, Shehrin Sayed, Samiran Ganguly, Giovanni Finocchio, Supriyo Datta, Kerem Y. Camsari
{"title":"Connecting physics to systems with modular spin-circuits","authors":"Kemal Selcuk, Saleh Bunaiyan, Nihal Sanjay Singh, Shehrin Sayed, Samiran Ganguly, Giovanni Finocchio, Supriyo Datta, Kerem Y. Camsari","doi":"10.1038/s44306-024-00059-8","DOIUrl":null,"url":null,"abstract":"An emerging paradigm in modern electronics is that of CMOS+ $${\\mathsf{X}}$$ requiring the integration of standard CMOS technology with novel materials and technologies denoted by $${\\mathsf{X}}$$ . In this context, a crucial challenge is to develop accurate circuit models for $${\\mathsf{X}}$$ that are compatible with standard models for CMOS-based circuits and systems. In this perspective, we present physics-based, experimentally benchmarked modular circuit models that can be used to evaluate a class of CMOS+ $${\\mathsf{X}}$$ systems, where $${\\mathsf{X}}$$ denotes magnetic and spintronic materials and phenomena. This class of materials is particularly challenging because they go beyond conventional charge-based phenomena and involve the spin degree of freedom which involves non-trivial quantum effects. Starting from density matrices—the central quantity in quantum transport—using well-defined approximations, it is possible to obtain spin-circuits that generalize ordinary circuit theory to 4-component currents and voltages (1 for charge and 3 for spin). With step-by-step examples that progressively become more complex, we illustrate how the spin-circuit approach can be used to start from the physics of magnetism and spintronics to enable accurate system-level evaluations. We believe the core approach can be extended to include other quantum degrees of freedom like valley and pseudospins starting from corresponding density matrices.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00059-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00059-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An emerging paradigm in modern electronics is that of CMOS+ $${\mathsf{X}}$$ requiring the integration of standard CMOS technology with novel materials and technologies denoted by $${\mathsf{X}}$$ . In this context, a crucial challenge is to develop accurate circuit models for $${\mathsf{X}}$$ that are compatible with standard models for CMOS-based circuits and systems. In this perspective, we present physics-based, experimentally benchmarked modular circuit models that can be used to evaluate a class of CMOS+ $${\mathsf{X}}$$ systems, where $${\mathsf{X}}$$ denotes magnetic and spintronic materials and phenomena. This class of materials is particularly challenging because they go beyond conventional charge-based phenomena and involve the spin degree of freedom which involves non-trivial quantum effects. Starting from density matrices—the central quantity in quantum transport—using well-defined approximations, it is possible to obtain spin-circuits that generalize ordinary circuit theory to 4-component currents and voltages (1 for charge and 3 for spin). With step-by-step examples that progressively become more complex, we illustrate how the spin-circuit approach can be used to start from the physics of magnetism and spintronics to enable accurate system-level evaluations. We believe the core approach can be extended to include other quantum degrees of freedom like valley and pseudospins starting from corresponding density matrices.

Abstract Image

用模块化自旋电路将物理学与系统联系起来
现代电子学的一个新兴范式是 CMOS+ $${\mathsf{X}}$,要求将标准 CMOS 技术与新型材料和技术(以 $${\mathsf{X}}$ 表示)相集成。 在这种情况下,一个关键的挑战是为 $${\mathsf{X}}$ 开发与基于 CMOS 电路和系统的标准模型兼容的精确电路模型。从这个角度出发,我们提出了基于物理学、以实验为基准的模块化电路模型,可用于评估一类 CMOS+ $${mathsf{X}}$ 系统,其中 $${mathsf{X}}$ 表示磁性和自旋电子材料及现象。这一类材料特别具有挑战性,因为它们超越了传统的电荷现象,涉及自旋自由度,而自旋自由度涉及非三维量子效应。从密度矩阵--量子传输中的核心量--开始,利用定义明确的近似值,可以获得自旋电路,将普通电路理论推广到 4 分量电流和电压(1 分量电荷,3 分量自旋)。通过逐步变得更加复杂的实例,我们说明了如何利用自旋电路方法从磁学和自旋电子学的物理学出发,实现精确的系统级评估。我们相信,这种核心方法可以扩展到其他量子自由度,如从相应的密度矩阵出发的谷和伪自旋。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信