{"title":"莫特材料:前途光明的不成功金属","authors":"Alessandra Milloch, Michele Fabrizio, Claudio Giannetti","doi":"10.1038/s44306-024-00047-y","DOIUrl":null,"url":null,"abstract":"Achieving the full understanding and control of the insulator-to-metal transition in Mott materials is key for the next generation of electronics devices, with applications ranging from ultrafast transistors, volatile and non-volatile memories and artificial neurons for neuromorphic computing. In this work, we will review the state-of-the-art knowledge of the Mott transition, with specific focus on materials of relevance for actual devices, such as vanadium and other transition metal oxides and chalcogenides. We will emphasize the current attempts in controlling the Mott switching dynamics via the application of external voltage and electromagnetic pulses and we will discuss how the recent advances in time- and space-resolved techniques are boosting the comprehension of the firing process. The nature of the voltage/light-induced Mott switching is inherently different from what is attainable by the slower variation of thermodynamic parameters, thus offering promising routes to achieving the reversible and ultrafast control of conductivity and magnetism in Mott nanodevices.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00047-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Mott materials: unsuccessful metals with a bright future\",\"authors\":\"Alessandra Milloch, Michele Fabrizio, Claudio Giannetti\",\"doi\":\"10.1038/s44306-024-00047-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving the full understanding and control of the insulator-to-metal transition in Mott materials is key for the next generation of electronics devices, with applications ranging from ultrafast transistors, volatile and non-volatile memories and artificial neurons for neuromorphic computing. In this work, we will review the state-of-the-art knowledge of the Mott transition, with specific focus on materials of relevance for actual devices, such as vanadium and other transition metal oxides and chalcogenides. We will emphasize the current attempts in controlling the Mott switching dynamics via the application of external voltage and electromagnetic pulses and we will discuss how the recent advances in time- and space-resolved techniques are boosting the comprehension of the firing process. The nature of the voltage/light-induced Mott switching is inherently different from what is attainable by the slower variation of thermodynamic parameters, thus offering promising routes to achieving the reversible and ultrafast control of conductivity and magnetism in Mott nanodevices.\",\"PeriodicalId\":501713,\"journal\":{\"name\":\"npj Spintronics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44306-024-00047-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Spintronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44306-024-00047-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00047-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mott materials: unsuccessful metals with a bright future
Achieving the full understanding and control of the insulator-to-metal transition in Mott materials is key for the next generation of electronics devices, with applications ranging from ultrafast transistors, volatile and non-volatile memories and artificial neurons for neuromorphic computing. In this work, we will review the state-of-the-art knowledge of the Mott transition, with specific focus on materials of relevance for actual devices, such as vanadium and other transition metal oxides and chalcogenides. We will emphasize the current attempts in controlling the Mott switching dynamics via the application of external voltage and electromagnetic pulses and we will discuss how the recent advances in time- and space-resolved techniques are boosting the comprehension of the firing process. The nature of the voltage/light-induced Mott switching is inherently different from what is attainable by the slower variation of thermodynamic parameters, thus offering promising routes to achieving the reversible and ultrafast control of conductivity and magnetism in Mott nanodevices.