{"title":"Membrane synthesis charges ahead","authors":"Suzana Nunes","doi":"10.1038/s44286-025-00280-0","DOIUrl":"10.1038/s44286-025-00280-0","url":null,"abstract":"Membranes with thin polymer layers (<100 nm), typically made via interfacial polymerization with large amounts of organic solvents, are essential for desalination and chemical separations. While membrane chemistry has diversified, fabrication methods have seen only incremental change. Now, a fully aqueous electrochemical synthesis brings innovation to membrane separations.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"533-534"},"PeriodicalIF":0.0,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Membrane synthesis charges ahead","authors":"Suzana Nunes","doi":"10.1038/s44286-025-00280-0","DOIUrl":"10.1038/s44286-025-00280-0","url":null,"abstract":"Membranes with thin polymer layers (<100 nm), typically made via interfacial polymerization with large amounts of organic solvents, are essential for desalination and chemical separations. While membrane chemistry has diversified, fabrication methods have seen only incremental change. Now, a fully aqueous electrochemical synthesis brings innovation to membrane separations.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"533-534"},"PeriodicalIF":0.0,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hot off the press","authors":"Sui Zhang","doi":"10.1038/s44286-025-00265-z","DOIUrl":"10.1038/s44286-025-00265-z","url":null,"abstract":"Advancing the production of covalent organic frameworks toward faster and more sustainable routes is crucial to realizing their potential in large-scale applications. Now, a variety of covalent organic framework platelets with high crystallinity can be produced rapidly using a pressure-assisted hot-pressing strategy.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"535-536"},"PeriodicalIF":0.0,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yurun Miao, Shunyi Zheng, Kayley E. Waltz, Mueed Ahmad, Xinpei Zhou, Yegui Zhou, Heting Wang, J. Anibal Boscoboinik, Qi Liu, Kumar Varoon Agrawal, Oleg Kostko, Liwei Zhuang, Michael Tsapatsis
{"title":"Spin-on deposition of amorphous zeolitic imidazolate framework films for lithography applications","authors":"Yurun Miao, Shunyi Zheng, Kayley E. Waltz, Mueed Ahmad, Xinpei Zhou, Yegui Zhou, Heting Wang, J. Anibal Boscoboinik, Qi Liu, Kumar Varoon Agrawal, Oleg Kostko, Liwei Zhuang, Michael Tsapatsis","doi":"10.1038/s44286-025-00273-z","DOIUrl":"10.1038/s44286-025-00273-z","url":null,"abstract":"Amorphous zeolitic imidazolate framework (aZIF) films have been recently introduced as resists for electron beam and extreme ultraviolet lithography. aZIFs are also being considered for separation applications, including thin film membranes. However, the reported methods for aZIF deposition are currently based on highly empirical trial-and-error approaches that hinder control of film composition, thickness and uniformity as well as scale-up and transferability to different coating geometries. This work presents a method for depositing aZIF films with controllable thickness using dilute precursors mixed immediately before encountering the substrate. Importantly, the method is amenable to quantitative analysis by computational fluid dynamics to extract intrinsic deposition rates and limiting reactant transport diffusivities, enabling predictive physics-based modeling of the deposition process. This allows the deposition method to be adapted for spin coating on silicon wafers to prepare high-quality aZIF films with consistently controlled thickness. Using this approach, high-resolution resist performance and wafer-scale use for beyond extreme-ultraviolet lithography of aZIF films is demonstrated. The lack of reliable coating methods for amorphous zeolitic imidazolate framework (aZIF) materials hinders their development for applications such as photolithography and separation membranes. Supported by computational fluid dynamics modeling, the authors develop a spin-coating technique to deposit aZIF films from dilute precursors and demonstrate their wafer-scale use in advanced lithographic processes.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"594-607"},"PeriodicalIF":0.0,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hot off the press","authors":"Sui Zhang","doi":"10.1038/s44286-025-00265-z","DOIUrl":"10.1038/s44286-025-00265-z","url":null,"abstract":"Advancing the production of covalent organic frameworks toward faster and more sustainable routes is crucial to realizing their potential in large-scale applications. Now, a variety of covalent organic framework platelets with high crystallinity can be produced rapidly using a pressure-assisted hot-pressing strategy.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"535-536"},"PeriodicalIF":0.0,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yurun Miao, Shunyi Zheng, Kayley E. Waltz, Mueed Ahmad, Xinpei Zhou, Yegui Zhou, Heting Wang, J. Anibal Boscoboinik, Qi Liu, Kumar Varoon Agrawal, Oleg Kostko, Liwei Zhuang, Michael Tsapatsis
{"title":"Spin-on deposition of amorphous zeolitic imidazolate framework films for lithography applications","authors":"Yurun Miao, Shunyi Zheng, Kayley E. Waltz, Mueed Ahmad, Xinpei Zhou, Yegui Zhou, Heting Wang, J. Anibal Boscoboinik, Qi Liu, Kumar Varoon Agrawal, Oleg Kostko, Liwei Zhuang, Michael Tsapatsis","doi":"10.1038/s44286-025-00273-z","DOIUrl":"10.1038/s44286-025-00273-z","url":null,"abstract":"Amorphous zeolitic imidazolate framework (aZIF) films have been recently introduced as resists for electron beam and extreme ultraviolet lithography. aZIFs are also being considered for separation applications, including thin film membranes. However, the reported methods for aZIF deposition are currently based on highly empirical trial-and-error approaches that hinder control of film composition, thickness and uniformity as well as scale-up and transferability to different coating geometries. This work presents a method for depositing aZIF films with controllable thickness using dilute precursors mixed immediately before encountering the substrate. Importantly, the method is amenable to quantitative analysis by computational fluid dynamics to extract intrinsic deposition rates and limiting reactant transport diffusivities, enabling predictive physics-based modeling of the deposition process. This allows the deposition method to be adapted for spin coating on silicon wafers to prepare high-quality aZIF films with consistently controlled thickness. Using this approach, high-resolution resist performance and wafer-scale use for beyond extreme-ultraviolet lithography of aZIF films is demonstrated. The lack of reliable coating methods for amorphous zeolitic imidazolate framework (aZIF) materials hinders their development for applications such as photolithography and separation membranes. Supported by computational fluid dynamics modeling, the authors develop a spin-coating technique to deposit aZIF films from dilute precursors and demonstrate their wafer-scale use in advanced lithographic processes.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"594-607"},"PeriodicalIF":0.0,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yehao Jin, Haozhi Wang, Hongfei Cheng, Mengchu Feng, Meng Zhang, Qingling Fu, Zhibing Sun, Xiantao Zeng, Yuze Sun, Wenjun Tuo, Bingbing Cheng, Shan Wang, Qianyou Wang, Qinglang Ma, Bo Wang
{"title":"Rapid solid-phase synthesis of highly crystalline covalent organic framework platelets","authors":"Yehao Jin, Haozhi Wang, Hongfei Cheng, Mengchu Feng, Meng Zhang, Qingling Fu, Zhibing Sun, Xiantao Zeng, Yuze Sun, Wenjun Tuo, Bingbing Cheng, Shan Wang, Qianyou Wang, Qinglang Ma, Bo Wang","doi":"10.1038/s44286-025-00277-9","DOIUrl":"10.1038/s44286-025-00277-9","url":null,"abstract":"Covalent organic frameworks (COFs) have demonstrated superior performance in wide-ranging applications, yet their practical deployment has been long hindered by their inconvenient synthesis protocols. Toxic solvents, tedious procedures and long reaction times are typically involved in their synthesis, and microcrystalline powders are commonly obtained, which are unfavorable in practical use. Unfortunately, newly developed methods aiming to resolve these challenges often lead to deteriorated COF crystallinity and porosity. Here we develop a solid-phase hot-pressing method to fabricate 15 types of highly crystalline COF platelet of various linkage types, including imine-, hydrazone-, β-ketoenamine- and imide-linked COFs. Moreover, COF platelets with complex chemical structures, including a COF with three-dimensional geometry and a COF with multiple monomer components, have been successfully obtained. In particular, all COF platelets can be obtained within a short processing time of 0.5–5 min, with high crystallinity and porosity. Finally, as a proof-of-concept application, a β-ketoenamine-linked COF platelet is directly assembled into an atmospheric water harvesting device, demonstrating excellent water collecting performance. A solid-phase hot-pressing method is introduced, which can rapidly produce highly crystalline covalent organic framework platelets in a convenient, solvent-free manner. Fifteen platelets of various linkage types are produced, with a proof-of-concept demonstration of the resulting high-performing platelet type in an atmospheric water harvesting device.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"581-593"},"PeriodicalIF":0.0,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yehao Jin, Haozhi Wang, Hongfei Cheng, Mengchu Feng, Meng Zhang, Qingling Fu, Zhibing Sun, Xiantao Zeng, Yuze Sun, Wenjun Tuo, Bingbing Cheng, Shan Wang, Qianyou Wang, Qinglang Ma, Bo Wang
{"title":"Rapid solid-phase synthesis of highly crystalline covalent organic framework platelets","authors":"Yehao Jin, Haozhi Wang, Hongfei Cheng, Mengchu Feng, Meng Zhang, Qingling Fu, Zhibing Sun, Xiantao Zeng, Yuze Sun, Wenjun Tuo, Bingbing Cheng, Shan Wang, Qianyou Wang, Qinglang Ma, Bo Wang","doi":"10.1038/s44286-025-00277-9","DOIUrl":"10.1038/s44286-025-00277-9","url":null,"abstract":"Covalent organic frameworks (COFs) have demonstrated superior performance in wide-ranging applications, yet their practical deployment has been long hindered by their inconvenient synthesis protocols. Toxic solvents, tedious procedures and long reaction times are typically involved in their synthesis, and microcrystalline powders are commonly obtained, which are unfavorable in practical use. Unfortunately, newly developed methods aiming to resolve these challenges often lead to deteriorated COF crystallinity and porosity. Here we develop a solid-phase hot-pressing method to fabricate 15 types of highly crystalline COF platelet of various linkage types, including imine-, hydrazone-, β-ketoenamine- and imide-linked COFs. Moreover, COF platelets with complex chemical structures, including a COF with three-dimensional geometry and a COF with multiple monomer components, have been successfully obtained. In particular, all COF platelets can be obtained within a short processing time of 0.5–5 min, with high crystallinity and porosity. Finally, as a proof-of-concept application, a β-ketoenamine-linked COF platelet is directly assembled into an atmospheric water harvesting device, demonstrating excellent water collecting performance. A solid-phase hot-pressing method is introduced, which can rapidly produce highly crystalline covalent organic framework platelets in a convenient, solvent-free manner. Fifteen platelets of various linkage types are produced, with a proof-of-concept demonstration of the resulting high-performing platelet type in an atmospheric water harvesting device.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"581-593"},"PeriodicalIF":0.0,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Aprile, Cedric Devos, Thomas Vetter, Gerard Capellades, Kevin P. Girard, Christopher L. Burcham, Venkateswarlu Bhamidi, Daniel Green, Torsten Stelzer, Richard D. Braatz, Allan S. Myerson
{"title":"Reflecting on barriers to continuous pharmaceutical crystallization","authors":"Giovanni Aprile, Cedric Devos, Thomas Vetter, Gerard Capellades, Kevin P. Girard, Christopher L. Burcham, Venkateswarlu Bhamidi, Daniel Green, Torsten Stelzer, Richard D. Braatz, Allan S. Myerson","doi":"10.1038/s44286-025-00268-w","DOIUrl":"10.1038/s44286-025-00268-w","url":null,"abstract":"This Comment explores why continuous crystallization, despite its success in other industries, remains underutilized in pharmaceutical manufacturing. Among other challenges, we highlight two core issues: the lack of off-the-shelf small-scale equipment with integrated monitoring tools, and the absence of compatible continuous downstream units for filtration and drying, both of which limit practical implementation.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"520-523"},"PeriodicalIF":0.0,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Aprile, Cedric Devos, Thomas Vetter, Gerard Capellades, Kevin P. Girard, Christopher L. Burcham, Venkateswarlu Bhamidi, Daniel Green, Torsten Stelzer, Richard D. Braatz, Allan S. Myerson
{"title":"Reflecting on barriers to continuous pharmaceutical crystallization","authors":"Giovanni Aprile, Cedric Devos, Thomas Vetter, Gerard Capellades, Kevin P. Girard, Christopher L. Burcham, Venkateswarlu Bhamidi, Daniel Green, Torsten Stelzer, Richard D. Braatz, Allan S. Myerson","doi":"10.1038/s44286-025-00268-w","DOIUrl":"10.1038/s44286-025-00268-w","url":null,"abstract":"This Comment explores why continuous crystallization, despite its success in other industries, remains underutilized in pharmaceutical manufacturing. Among other challenges, we highlight two core issues: the lack of off-the-shelf small-scale equipment with integrated monitoring tools, and the absence of compatible continuous downstream units for filtration and drying, both of which limit practical implementation.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"520-523"},"PeriodicalIF":0.0,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}