Journal of Machine Learning Research最新文献

筛选
英文 中文
Quantile Graphical Models: Bayesian Approaches. 分位数图形模型:贝叶斯方法。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2020-01-01
Nilabja Guha, Veera Baladandayuthapani, Bani K Mallick
{"title":"Quantile Graphical Models: Bayesian Approaches.","authors":"Nilabja Guha,&nbsp;Veera Baladandayuthapani,&nbsp;Bani K Mallick","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Graphical models are ubiquitous tools to describe the interdependence between variables measured simultaneously such as large-scale gene or protein expression data. Gaussian graphical models (GGMs) are well-established tools for probabilistic exploration of dependence structures using precision matrices and they are generated under a multivariate normal joint distribution. However, they suffer from several shortcomings since they are based on Gaussian distribution assumptions. In this article, we propose a Bayesian quantile based approach for sparse estimation of graphs. We demonstrate that the resulting graph estimation is robust to outliers and applicable under general distributional assumptions. Furthermore, we develop efficient variational Bayes approximations to scale the methods for large data sets. Our methods are applied to a novel cancer proteomics data dataset where-in multiple proteomic antibodies are simultaneously assessed on tumor samples using reverse-phase protein arrays (RPPA) technology.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"21 79","pages":"1-47"},"PeriodicalIF":6.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297664/pdf/nihms-1636569.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39223529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-optimal Individualized Treatment Recommendations. 近乎最佳的个体化治疗建议。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2020-01-01
Haomiao Meng, Ying-Qi Zhao, Haoda Fu, Xingye Qiao
{"title":"Near-optimal Individualized Treatment Recommendations.","authors":"Haomiao Meng,&nbsp;Ying-Qi Zhao,&nbsp;Haoda Fu,&nbsp;Xingye Qiao","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The individualized treatment recommendation (ITR) is an important analytic framework for precision medicine. The goal of ITR is to assign the best treatments to patients based on their individual characteristics. From the machine learning perspective, the solution to the ITR problem can be formulated as a weighted classification problem to maximize the mean benefit from the recommended treatments given patients' characteristics. Several ITR methods have been proposed in both the binary setting and the multicategory setting. In practice, one may prefer a more flexible recommendation that includes multiple treatment options. This motivates us to develop methods to obtain a set of near-optimal individualized treatment recommendations alternative to each other, called alternative individualized treatment recommendations (A-ITR). We propose two methods to estimate the optimal A-ITR within the outcome weighted learning (OWL) framework. Simulation studies and a real data analysis for Type 2 diabetic patients with injectable antidiabetic treatments are conducted to show the usefulness of the proposed A-ITR framework. We also show the consistency of these methods and obtain an upper bound for the risk between the theoretically optimal recommendation and the estimated one. An R package aitr has been developed, found at https://github.com/menghaomiao/aitr.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"21 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8324003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39264728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions. 鲁棒异步随机梯度推:强凸函数的渐近最优和网络无关性能。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2020-01-01
Artin Spiridonoff, Alex Olshevsky, Ioannis Ch Paschalidis
{"title":"Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions.","authors":"Artin Spiridonoff,&nbsp;Alex Olshevsky,&nbsp;Ioannis Ch Paschalidis","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We consider the standard model of distributed optimization of a sum of functions <math><mrow><mi>F</mi> <mrow><mo>(</mo> <mi>z</mi> <mo>)</mo></mrow> <mo>=</mo> <msubsup><mo>∑</mo> <mrow><mi>i</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>n</mi></msubsup> <mrow><msub><mi>f</mi> <mi>i</mi></msub> <mrow><mo>(</mo> <mi>z</mi> <mo>)</mo></mrow> </mrow> </mrow> </math> , where node <i>i</i> in a network holds the function <i>f<sub>i</sub></i> (<b>z</b>). We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that (i) node <i>i</i> is capable of generating gradients of its function <i>f<sub>i</sub></i> (<b>z</b>) corrupted by zero-mean bounded-support additive noise at each step, (ii) <i>F</i>(<b>z</b>) is strongly convex, and (iii) each <i>f<sub>i</sub></i> (<b>z</b>) has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions <i>f</i> <sub>1</sub>(<b>z</b>), …, <i>f<sub>n</sub></i> (<b>z</b>) at each step.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"21 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38434192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Regularization-Based Adaptive Test for High-Dimensional Generalized Linear Models. 高维广义线性模型的基于正则化的自适应检验。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2020-01-01 Epub Date: 2020-07-26
Chong Wu, Gongjun Xu, Xiaotong Shen, Wei Pan
{"title":"A Regularization-Based Adaptive Test for High-Dimensional Generalized Linear Models.","authors":"Chong Wu,&nbsp;Gongjun Xu,&nbsp;Xiaotong Shen,&nbsp;Wei Pan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In spite of its urgent importance in the era of big data, testing high-dimensional parameters in generalized linear models (GLMs) in the presence of high-dimensional nuisance parameters has been largely under-studied, especially with regard to constructing powerful tests for general (and unknown) alternatives. Most existing tests are powerful only against certain alternatives and may yield incorrect Type I error rates under high-dimensional nuisance parameter situations. In this paper, we propose the adaptive interaction sum of powered score (aiSPU) test in the framework of penalized regression with a non-convex penalty, called truncated Lasso penalty (TLP), which can maintain correct Type I error rates while yielding high statistical power across a wide range of alternatives. To calculate its <i>p</i>-values analytically, we derive its asymptotic null distribution. Via simulations, its superior finite-sample performance is demonstrated over several representative existing methods. In addition, we apply it and other representative tests to an Alzheimer's Disease Neuroimaging Initiative (ADNI) data set, detecting possible gene-gender interactions for Alzheimer's disease. We also put R package \"<i>aispu</i>\" implementing the proposed test on GitHub.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"21 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38270305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimax Nonparametric Parallelism Test. 最小非参数平行检验。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2020-01-01
Xin Xing, Meimei Liu, Ping Ma, Wenxuan Zhong
{"title":"Minimax Nonparametric Parallelism Test.","authors":"Xin Xing, Meimei Liu, Ping Ma, Wenxuan Zhong","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Testing the hypothesis of parallelism is a fundamental statistical problem arising from many applied sciences. In this paper, we develop a nonparametric parallelism test for inferring whether the trends are parallel in treatment and control groups. In particular, the proposed nonparametric parallelism test is a Wald type test based on a smoothing spline ANOVA (SSANOVA) model which can characterize the complex patterns of the data. We derive that the asymptotic null distribution of the test statistic is a Chi-square distribution, unveiling a new version of Wilks phenomenon. Notably, we establish the minimax sharp lower bound of the distinguishable rate for the nonparametric parallelism test by using the information theory, and further prove that the proposed test is minimax optimal. Simulation studies are conducted to investigate the empirical performance of the proposed test. DNA methylation and neuroimaging studies are presented to illustrate potential applications of the test. The software is available at https://github.com/BioAlgs/Parallelism.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"21 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Provable Convex Co-clustering of Tensors. 可证明的张量凸共聚
IF 4.3 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2020-01-01
Eric C Chi, Brian R Gaines, Will Wei Sun, Hua Zhou, Jian Yang
{"title":"Provable Convex Co-clustering of Tensors.","authors":"Eric C Chi, Brian R Gaines, Will Wei Sun, Hua Zhou, Jian Yang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Cluster analysis is a fundamental tool for pattern discovery of complex heterogeneous data. Prevalent clustering methods mainly focus on vector or matrix-variate data and are not applicable to general-order tensors, which arise frequently in modern scientific and business applications. Moreover, there is a gap between statistical guarantees and computational efficiency for existing tensor clustering solutions due to the nature of their non-convex formulations. In this work, we bridge this gap by developing a provable convex formulation of tensor co-clustering. Our convex co-clustering (CoCo) estimator enjoys stability guarantees and its computational and storage costs are polynomial in the size of the data. We further establish a non-asymptotic error bound for the CoCo estimator, which reveals a surprising \"blessing of dimensionality\" phenomenon that does not exist in vector or matrix-variate cluster analysis. Our theoretical findings are supported by extensive simulated studies. Finally, we apply the CoCo estimator to the cluster analysis of advertisement click tensor data from a major online company. Our clustering results provide meaningful business insights to improve advertising effectiveness.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"21 ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38706545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proximal Distance Algorithms: Theory and Practice. 近距离算法:理论与实践。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2019-04-01
Kevin L Keys, Hua Zhou, Kenneth Lange
{"title":"Proximal Distance Algorithms: Theory and Practice.","authors":"Kevin L Keys,&nbsp;Hua Zhou,&nbsp;Kenneth Lange","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Proximal distance algorithms combine the classical penalty method of constrained minimization with distance majorization. If <i>f</i>(<i>x</i>) is the loss function, and <i>C</i> is the constraint set in a constrained minimization problem, then the proximal distance principle mandates minimizing the penalized loss <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>+</mo> <mfrac><mi>ρ</mi> <mn>2</mn></mfrac> <mtext>dist</mtext> <msup> <mrow><mrow><mo>(</mo> <mrow><mi>x</mi> <mo>,</mo> <mi>C</mi></mrow> <mo>)</mo></mrow> </mrow> <mn>2</mn></msup> </mrow> </math> and following the solution <i>x</i> <sub><i>ρ</i></sub> to its limit as <i>ρ</i> tends to ∞. At each iteration the squared Euclidean distance dist(<i>x,C</i>)<sup>2</sup> is majorized by the spherical quadratic ‖<i>x</i>- <i>P</i> <sub><i>C</i></sub> (<i>x</i> <sub><i>k</i></sub> )‖<sup>2</sup>, where <i>P</i> <sub><i>C</i></sub> (<i>x</i> <sub><i>k</i></sub> ) denotes the projection of the current iterate <i>x</i> <sub><i>k</i></sub> onto <i>C</i>. The minimum of the surrogate function <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>+</mo> <mfrac><mi>ρ</mi> <mn>2</mn></mfrac> <mo>‖</mo> <mi>x</mi> <mo>-</mo> <msub><mi>P</mi> <mi>C</mi></msub> <mrow><mo>(</mo> <mrow><msub><mi>x</mi> <mi>k</mi></msub> </mrow> <mo>)</mo></mrow> <msup><mo>‖</mo> <mn>2</mn></msup> </mrow> </math> is given by the proximal map prox <sub><i>ρ</i></sub> -<sub>1<i>f</i></sub> [<i>P</i> <sub><i>C</i></sub> (<i>x</i> <sub><i>k</i></sub> )]. The next iterate <i>x</i> <sub><i>k</i>+1</sub> automatically decreases the original penalized loss for fixed <i>ρ</i>. Since many explicit projections and proximal maps are known, it is straightforward to derive and implement novel optimization algorithms in this setting. These algorithms can take hundreds if not thousands of iterations to converge, but the simple nature of each iteration makes proximal distance algorithms competitive with traditional algorithms. For convex problems, proximal distance algorithms reduce to proximal gradient algorithms and therefore enjoy well understood convergence properties. For nonconvex problems, one can attack convergence by invoking Zangwill's theorem. Our numerical examples demonstrate the utility of proximal distance algorithms in various high-dimensional settings, including a) linear programming, b) constrained least squares, c) projection to the closest kinship matrix, d) projection onto a second-order cone constraint, e) calculation of Horn's copositive matrix index, f) linear complementarity programming, and g) sparse principal components analysis. The proximal distance algorithm in each case is competitive or superior in speed to traditional methods such as the interior point method and the alternating direction method of multipliers (ADMM). Source code for the numerical examples can be found at https://github.com/klkeys/proxdist.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"20 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Reduced PC-Algorithm: Improved Causal Structure Learning in Large Random Networks. 简化PC算法:大型随机网络中改进的因果结构学习。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2019-01-01
Arjun Sondhi, Ali Shojaie
{"title":"The Reduced PC-Algorithm: Improved Causal Structure Learning in Large Random Networks.","authors":"Arjun Sondhi, Ali Shojaie","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We consider the task of estimating a high-dimensional directed acyclic graph, given observations from a linear structural equation model with arbitrary noise distribution. By exploiting properties of common random graphs, we develop a new algorithm that requires conditioning only on small sets of variables. The proposed algorithm, which is essentially a modified version of the PC-Algorithm, offers significant gains in both computational complexity and estimation accuracy. In particular, it results in more efficient and accurate estimation in large networks containing hub nodes, which are common in biological systems. We prove the consistency of the proposed algorithm, and show that it also requires a less stringent faithfulness assumption than the PC-Algorithm. Simulations in low and high-dimensional settings are used to illustrate these findings. An application to gene expression data suggests that the proposed algorithm can identify a greater number of clinically relevant genes than current methods.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"20 164","pages":""},"PeriodicalIF":6.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552884/pdf/nihms-1885649.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41105823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Causal Learning via Manifold Regularization. 通过漫反射正则化进行因果学习
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2019-01-01
Steven M Hill, Chris J Oates, Duncan A Blythe, Sach Mukherjee
{"title":"Causal Learning via Manifold Regularization.","authors":"Steven M Hill, Chris J Oates, Duncan A Blythe, Sach Mukherjee","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user's point of view.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"20 ","pages":"127"},"PeriodicalIF":6.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986916/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9142095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient augmentation and relaxation learning for individualized treatment rules using observational data. 使用观察数据对个性化治疗规则进行有效的强化和放松学习。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2019-01-01
Ying-Qi Zhao, Eric B Laber, Yang Ning, Sumona Saha, Bruce E Sands
{"title":"Efficient augmentation and relaxation learning for individualized treatment rules using observational data.","authors":"Ying-Qi Zhao, Eric B Laber, Yang Ning, Sumona Saha, Bruce E Sands","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Individualized treatment rules aim to identify if, when, which, and to whom treatment should be applied. A globally aging population, rising healthcare costs, and increased access to patient-level data have created an urgent need for high-quality estimators of individualized treatment rules that can be applied to observational data. A recent and promising line of research for estimating individualized treatment rules recasts the problem of estimating an optimal treatment rule as a weighted classification problem. We consider a class of estimators for optimal treatment rules that are analogous to convex large-margin classifiers. The proposed class applies to observational data and is doubly-robust in the sense that correct specification of either a propensity or outcome model leads to consistent estimation of the optimal individualized treatment rule. Using techniques from semiparametric efficiency theory, we derive rates of convergence for the proposed estimators and use these rates to characterize the bias-variance trade-off for estimating individualized treatment rules with classification-based methods. Simulation experiments informed by these results demonstrate that it is possible to construct new estimators within the proposed framework that significantly outperform existing ones. We illustrate the proposed methods using data from a labor training program and a study of inflammatory bowel syndrome.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"20 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信