鲁棒异步随机梯度推:强凸函数的渐近最优和网络无关性能。

IF 4.3 3区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Journal of Machine Learning Research Pub Date : 2020-01-01
Artin Spiridonoff, Alex Olshevsky, Ioannis Ch Paschalidis
{"title":"鲁棒异步随机梯度推:强凸函数的渐近最优和网络无关性能。","authors":"Artin Spiridonoff,&nbsp;Alex Olshevsky,&nbsp;Ioannis Ch Paschalidis","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the standard model of distributed optimization of a sum of functions <math><mrow><mi>F</mi> <mrow><mo>(</mo> <mi>z</mi> <mo>)</mo></mrow> <mo>=</mo> <msubsup><mo>∑</mo> <mrow><mi>i</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>n</mi></msubsup> <mrow><msub><mi>f</mi> <mi>i</mi></msub> <mrow><mo>(</mo> <mi>z</mi> <mo>)</mo></mrow> </mrow> </mrow> </math> , where node <i>i</i> in a network holds the function <i>f<sub>i</sub></i> (<b>z</b>). We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that (i) node <i>i</i> is capable of generating gradients of its function <i>f<sub>i</sub></i> (<b>z</b>) corrupted by zero-mean bounded-support additive noise at each step, (ii) <i>F</i>(<b>z</b>) is strongly convex, and (iii) each <i>f<sub>i</sub></i> (<b>z</b>) has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions <i>f</i> <sub>1</sub>(<b>z</b>), …, <i>f<sub>n</sub></i> (<b>z</b>) at each step.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"21 ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520166/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions.\",\"authors\":\"Artin Spiridonoff,&nbsp;Alex Olshevsky,&nbsp;Ioannis Ch Paschalidis\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the standard model of distributed optimization of a sum of functions <math><mrow><mi>F</mi> <mrow><mo>(</mo> <mi>z</mi> <mo>)</mo></mrow> <mo>=</mo> <msubsup><mo>∑</mo> <mrow><mi>i</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>n</mi></msubsup> <mrow><msub><mi>f</mi> <mi>i</mi></msub> <mrow><mo>(</mo> <mi>z</mi> <mo>)</mo></mrow> </mrow> </mrow> </math> , where node <i>i</i> in a network holds the function <i>f<sub>i</sub></i> (<b>z</b>). We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that (i) node <i>i</i> is capable of generating gradients of its function <i>f<sub>i</sub></i> (<b>z</b>) corrupted by zero-mean bounded-support additive noise at each step, (ii) <i>F</i>(<b>z</b>) is strongly convex, and (iii) each <i>f<sub>i</sub></i> (<b>z</b>) has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions <i>f</i> <sub>1</sub>(<b>z</b>), …, <i>f<sub>n</sub></i> (<b>z</b>) at each step.</p>\",\"PeriodicalId\":50161,\"journal\":{\"name\":\"Journal of Machine Learning Research\",\"volume\":\"21 \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520166/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Learning Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑函数和的分布式优化的标准模型F (z) =∑i = 1 n F i (z),其中网络中的节点i保存函数fi (z)。我们允许一个苛刻的网络模型,其特征是异步更新,消息延迟,不可预测的消息丢失和节点之间的定向通信。在此设置中,我们分析了用于分布式优化的Gradient-Push方法的修改,假设(i)节点i能够生成其函数fi (z)的梯度,该函数在每一步都被零均值有界支持加性噪声破坏,(ii) F(z)是强凸的,以及(iii)每个fi (z)具有Lipschitz梯度。我们表明,我们提出的方法在集中梯度下降上的渐近性能与最佳边界一样好,该方法在每一步都朝着所有函数f1 (z),…,fn (z)的噪声梯度之和的方向采取步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions.

Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions.

Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions.

Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions.

We consider the standard model of distributed optimization of a sum of functions F ( z ) = i = 1 n f i ( z ) , where node i in a network holds the function fi (z). We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that (i) node i is capable of generating gradients of its function fi (z) corrupted by zero-mean bounded-support additive noise at each step, (ii) F(z) is strongly convex, and (iii) each fi (z) has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions f 1(z), …, fn (z) at each step.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Machine Learning Research
Journal of Machine Learning Research 工程技术-计算机:人工智能
CiteScore
18.80
自引率
0.00%
发文量
2
审稿时长
3 months
期刊介绍: The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online. JMLR has a commitment to rigorous yet rapid reviewing. JMLR seeks previously unpublished papers on machine learning that contain: new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature; experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems; accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods; formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks; development of new analytical frameworks that advance theoretical studies of practical learning methods; computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信