{"title":"最小非参数平行检验。","authors":"Xin Xing, Meimei Liu, Ping Ma, Wenxuan Zhong","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Testing the hypothesis of parallelism is a fundamental statistical problem arising from many applied sciences. In this paper, we develop a nonparametric parallelism test for inferring whether the trends are parallel in treatment and control groups. In particular, the proposed nonparametric parallelism test is a Wald type test based on a smoothing spline ANOVA (SSANOVA) model which can characterize the complex patterns of the data. We derive that the asymptotic null distribution of the test statistic is a Chi-square distribution, unveiling a new version of Wilks phenomenon. Notably, we establish the minimax sharp lower bound of the distinguishable rate for the nonparametric parallelism test by using the information theory, and further prove that the proposed test is minimax optimal. Simulation studies are conducted to investigate the empirical performance of the proposed test. DNA methylation and neuroimaging studies are presented to illustrate potential applications of the test. The software is available at https://github.com/BioAlgs/Parallelism.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086968/pdf/","citationCount":"0","resultStr":"{\"title\":\"Minimax Nonparametric Parallelism Test.\",\"authors\":\"Xin Xing, Meimei Liu, Ping Ma, Wenxuan Zhong\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Testing the hypothesis of parallelism is a fundamental statistical problem arising from many applied sciences. In this paper, we develop a nonparametric parallelism test for inferring whether the trends are parallel in treatment and control groups. In particular, the proposed nonparametric parallelism test is a Wald type test based on a smoothing spline ANOVA (SSANOVA) model which can characterize the complex patterns of the data. We derive that the asymptotic null distribution of the test statistic is a Chi-square distribution, unveiling a new version of Wilks phenomenon. Notably, we establish the minimax sharp lower bound of the distinguishable rate for the nonparametric parallelism test by using the information theory, and further prove that the proposed test is minimax optimal. Simulation studies are conducted to investigate the empirical performance of the proposed test. DNA methylation and neuroimaging studies are presented to illustrate potential applications of the test. The software is available at https://github.com/BioAlgs/Parallelism.</p>\",\"PeriodicalId\":50161,\"journal\":{\"name\":\"Journal of Machine Learning Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086968/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Learning Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Testing the hypothesis of parallelism is a fundamental statistical problem arising from many applied sciences. In this paper, we develop a nonparametric parallelism test for inferring whether the trends are parallel in treatment and control groups. In particular, the proposed nonparametric parallelism test is a Wald type test based on a smoothing spline ANOVA (SSANOVA) model which can characterize the complex patterns of the data. We derive that the asymptotic null distribution of the test statistic is a Chi-square distribution, unveiling a new version of Wilks phenomenon. Notably, we establish the minimax sharp lower bound of the distinguishable rate for the nonparametric parallelism test by using the information theory, and further prove that the proposed test is minimax optimal. Simulation studies are conducted to investigate the empirical performance of the proposed test. DNA methylation and neuroimaging studies are presented to illustrate potential applications of the test. The software is available at https://github.com/BioAlgs/Parallelism.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.