近距离算法:理论与实践。

IF 4.3 3区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Journal of Machine Learning Research Pub Date : 2019-04-01
Kevin L Keys, Hua Zhou, Kenneth Lange
{"title":"近距离算法:理论与实践。","authors":"Kevin L Keys,&nbsp;Hua Zhou,&nbsp;Kenneth Lange","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Proximal distance algorithms combine the classical penalty method of constrained minimization with distance majorization. If <i>f</i>(<i>x</i>) is the loss function, and <i>C</i> is the constraint set in a constrained minimization problem, then the proximal distance principle mandates minimizing the penalized loss <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>+</mo> <mfrac><mi>ρ</mi> <mn>2</mn></mfrac> <mtext>dist</mtext> <msup> <mrow><mrow><mo>(</mo> <mrow><mi>x</mi> <mo>,</mo> <mi>C</mi></mrow> <mo>)</mo></mrow> </mrow> <mn>2</mn></msup> </mrow> </math> and following the solution <i>x</i> <sub><i>ρ</i></sub> to its limit as <i>ρ</i> tends to ∞. At each iteration the squared Euclidean distance dist(<i>x,C</i>)<sup>2</sup> is majorized by the spherical quadratic ‖<i>x</i>- <i>P</i> <sub><i>C</i></sub> (<i>x</i> <sub><i>k</i></sub> )‖<sup>2</sup>, where <i>P</i> <sub><i>C</i></sub> (<i>x</i> <sub><i>k</i></sub> ) denotes the projection of the current iterate <i>x</i> <sub><i>k</i></sub> onto <i>C</i>. The minimum of the surrogate function <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>+</mo> <mfrac><mi>ρ</mi> <mn>2</mn></mfrac> <mo>‖</mo> <mi>x</mi> <mo>-</mo> <msub><mi>P</mi> <mi>C</mi></msub> <mrow><mo>(</mo> <mrow><msub><mi>x</mi> <mi>k</mi></msub> </mrow> <mo>)</mo></mrow> <msup><mo>‖</mo> <mn>2</mn></msup> </mrow> </math> is given by the proximal map prox <sub><i>ρ</i></sub> -<sub>1<i>f</i></sub> [<i>P</i> <sub><i>C</i></sub> (<i>x</i> <sub><i>k</i></sub> )]. The next iterate <i>x</i> <sub><i>k</i>+1</sub> automatically decreases the original penalized loss for fixed <i>ρ</i>. Since many explicit projections and proximal maps are known, it is straightforward to derive and implement novel optimization algorithms in this setting. These algorithms can take hundreds if not thousands of iterations to converge, but the simple nature of each iteration makes proximal distance algorithms competitive with traditional algorithms. For convex problems, proximal distance algorithms reduce to proximal gradient algorithms and therefore enjoy well understood convergence properties. For nonconvex problems, one can attack convergence by invoking Zangwill's theorem. Our numerical examples demonstrate the utility of proximal distance algorithms in various high-dimensional settings, including a) linear programming, b) constrained least squares, c) projection to the closest kinship matrix, d) projection onto a second-order cone constraint, e) calculation of Horn's copositive matrix index, f) linear complementarity programming, and g) sparse principal components analysis. The proximal distance algorithm in each case is competitive or superior in speed to traditional methods such as the interior point method and the alternating direction method of multipliers (ADMM). Source code for the numerical examples can be found at https://github.com/klkeys/proxdist.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812563/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proximal Distance Algorithms: Theory and Practice.\",\"authors\":\"Kevin L Keys,&nbsp;Hua Zhou,&nbsp;Kenneth Lange\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proximal distance algorithms combine the classical penalty method of constrained minimization with distance majorization. If <i>f</i>(<i>x</i>) is the loss function, and <i>C</i> is the constraint set in a constrained minimization problem, then the proximal distance principle mandates minimizing the penalized loss <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>+</mo> <mfrac><mi>ρ</mi> <mn>2</mn></mfrac> <mtext>dist</mtext> <msup> <mrow><mrow><mo>(</mo> <mrow><mi>x</mi> <mo>,</mo> <mi>C</mi></mrow> <mo>)</mo></mrow> </mrow> <mn>2</mn></msup> </mrow> </math> and following the solution <i>x</i> <sub><i>ρ</i></sub> to its limit as <i>ρ</i> tends to ∞. At each iteration the squared Euclidean distance dist(<i>x,C</i>)<sup>2</sup> is majorized by the spherical quadratic ‖<i>x</i>- <i>P</i> <sub><i>C</i></sub> (<i>x</i> <sub><i>k</i></sub> )‖<sup>2</sup>, where <i>P</i> <sub><i>C</i></sub> (<i>x</i> <sub><i>k</i></sub> ) denotes the projection of the current iterate <i>x</i> <sub><i>k</i></sub> onto <i>C</i>. The minimum of the surrogate function <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>+</mo> <mfrac><mi>ρ</mi> <mn>2</mn></mfrac> <mo>‖</mo> <mi>x</mi> <mo>-</mo> <msub><mi>P</mi> <mi>C</mi></msub> <mrow><mo>(</mo> <mrow><msub><mi>x</mi> <mi>k</mi></msub> </mrow> <mo>)</mo></mrow> <msup><mo>‖</mo> <mn>2</mn></msup> </mrow> </math> is given by the proximal map prox <sub><i>ρ</i></sub> -<sub>1<i>f</i></sub> [<i>P</i> <sub><i>C</i></sub> (<i>x</i> <sub><i>k</i></sub> )]. The next iterate <i>x</i> <sub><i>k</i>+1</sub> automatically decreases the original penalized loss for fixed <i>ρ</i>. Since many explicit projections and proximal maps are known, it is straightforward to derive and implement novel optimization algorithms in this setting. These algorithms can take hundreds if not thousands of iterations to converge, but the simple nature of each iteration makes proximal distance algorithms competitive with traditional algorithms. For convex problems, proximal distance algorithms reduce to proximal gradient algorithms and therefore enjoy well understood convergence properties. For nonconvex problems, one can attack convergence by invoking Zangwill's theorem. Our numerical examples demonstrate the utility of proximal distance algorithms in various high-dimensional settings, including a) linear programming, b) constrained least squares, c) projection to the closest kinship matrix, d) projection onto a second-order cone constraint, e) calculation of Horn's copositive matrix index, f) linear complementarity programming, and g) sparse principal components analysis. The proximal distance algorithm in each case is competitive or superior in speed to traditional methods such as the interior point method and the alternating direction method of multipliers (ADMM). Source code for the numerical examples can be found at https://github.com/klkeys/proxdist.</p>\",\"PeriodicalId\":50161,\"journal\":{\"name\":\"Journal of Machine Learning Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812563/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Learning Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

近距离算法将约束最小化的经典惩罚方法与距离优化相结合。如果f(x)是损失函数,而C是约束最小化问题中的约束集,则近距离原理要求最小化惩罚损失f(x)+ρ2 dist(x,C)2,并在ρ趋于∞时遵循解xρ到其极限。在每次迭代中,欧几里得距离dist(x,C)2的平方由球面二次方的‖x-PC(xk)‖2来控制,其中PC(xK)表示当前迭代的xk在C上的投影。代理函数f(x)+ρ2‖x-P C(xk。下一次迭代x k+1自动减少固定ρ的原始惩罚损失。由于许多显式投影和近端映射是已知的,因此在这种情况下推导和实现新的优化算法是简单的。这些算法可能需要数百次甚至数千次迭代才能收敛,但每次迭代的简单性使近距离算法与传统算法具有竞争力。对于凸问题,近距离算法简化为近梯度算法,因此具有众所周知的收敛特性。对于非凸问题,可以通过调用Zangwill定理来攻击收敛性。我们的数值例子证明了近距离算法在各种高维设置中的实用性,包括a)线性规划,b)约束最小二乘,c)投影到最接近的亲属矩阵,d)投影到二阶锥约束,e)计算Horn的正方矩阵指数,f)线性互补规划,以及g)稀疏主成分分析。在每种情况下,近距离算法在速度上都优于传统方法,如内点法和交替方向乘法器法(ADMM)。有关数值示例的源代码,请访问https://github.com/klkeys/proxdist.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Proximal Distance Algorithms: Theory and Practice.

Proximal Distance Algorithms: Theory and Practice.

Proximal Distance Algorithms: Theory and Practice.

Proximal Distance Algorithms: Theory and Practice.

Proximal distance algorithms combine the classical penalty method of constrained minimization with distance majorization. If f(x) is the loss function, and C is the constraint set in a constrained minimization problem, then the proximal distance principle mandates minimizing the penalized loss f ( x ) + ρ 2 dist ( x , C ) 2 and following the solution x ρ to its limit as ρ tends to ∞. At each iteration the squared Euclidean distance dist(x,C)2 is majorized by the spherical quadratic ‖x- P C (x k )‖2, where P C (x k ) denotes the projection of the current iterate x k onto C. The minimum of the surrogate function f ( x ) + ρ 2 x - P C ( x k ) 2 is given by the proximal map prox ρ -1f [P C (x k )]. The next iterate x k+1 automatically decreases the original penalized loss for fixed ρ. Since many explicit projections and proximal maps are known, it is straightforward to derive and implement novel optimization algorithms in this setting. These algorithms can take hundreds if not thousands of iterations to converge, but the simple nature of each iteration makes proximal distance algorithms competitive with traditional algorithms. For convex problems, proximal distance algorithms reduce to proximal gradient algorithms and therefore enjoy well understood convergence properties. For nonconvex problems, one can attack convergence by invoking Zangwill's theorem. Our numerical examples demonstrate the utility of proximal distance algorithms in various high-dimensional settings, including a) linear programming, b) constrained least squares, c) projection to the closest kinship matrix, d) projection onto a second-order cone constraint, e) calculation of Horn's copositive matrix index, f) linear complementarity programming, and g) sparse principal components analysis. The proximal distance algorithm in each case is competitive or superior in speed to traditional methods such as the interior point method and the alternating direction method of multipliers (ADMM). Source code for the numerical examples can be found at https://github.com/klkeys/proxdist.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Machine Learning Research
Journal of Machine Learning Research 工程技术-计算机:人工智能
CiteScore
18.80
自引率
0.00%
发文量
2
审稿时长
3 months
期刊介绍: The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online. JMLR has a commitment to rigorous yet rapid reviewing. JMLR seeks previously unpublished papers on machine learning that contain: new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature; experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems; accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods; formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks; development of new analytical frameworks that advance theoretical studies of practical learning methods; computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信