bioRxiv - Cell Biology最新文献

筛选
英文 中文
A Nerve-Fibroblast Axis in Mammalian Lung Fibrosis 哺乳动物肺纤维化中的神经-成纤维细胞轴
bioRxiv - Cell Biology Pub Date : 2024-09-09 DOI: 10.1101/2024.09.09.611003
Genta Ishikawa, Xueyan Peng, John McGovern, Alexander Ghincea, Samuel Woo, Daisuke Okuno, Sheeline Yu, Chris J. Lee, Angela Liu, Tina Saber, Buqu Hu, Ying Sun, Huanxing Sun, Karam Al Jumaily, Carol Feghali-Bostwick, Tomokazu S. Sumida, Maor Sauler, Changwan Ryu, Erica L. Herzog
{"title":"A Nerve-Fibroblast Axis in Mammalian Lung Fibrosis","authors":"Genta Ishikawa, Xueyan Peng, John McGovern, Alexander Ghincea, Samuel Woo, Daisuke Okuno, Sheeline Yu, Chris J. Lee, Angela Liu, Tina Saber, Buqu Hu, Ying Sun, Huanxing Sun, Karam Al Jumaily, Carol Feghali-Bostwick, Tomokazu S. Sumida, Maor Sauler, Changwan Ryu, Erica L. Herzog","doi":"10.1101/2024.09.09.611003","DOIUrl":"https://doi.org/10.1101/2024.09.09.611003","url":null,"abstract":"Tissue fibrosis contributes to pathology in vital organs including the lung. Curative therapies are scant. Myofibroblasts, pivotal effector cells in tissue fibrosis, accumulate via incompletely understood interactions with their microenvironment. In an investigative platform grounded in experimental lung biology, we find that sympathetic innervation stimulates fibrotic remodeling via noradrenergic α1-adrenergic receptor engagement in myofibroblasts. We demonstrate the anti-fibrotic potential of targeted sympathetic denervation and pharmacological disruption of noradrenergic neurotransmitter functions mediated by α1-adrenoreceptors (α1-ARs). Using the α1-adrenoreceptor subtype D as a representative α1-AR, we discover direct noradrenergic input from sympathetic nerves to lung myofibroblasts utilizing established mouse models, genetic denervation, pharmacologic interventions, a newly invented transgenic mouse line, advanced tissue mimetics, and samples from patients with diverse forms of pulmonary fibrosis. The discovery of this previously unappreciated nerve-fibroblast axis in the lung demonstrates the crucial contribution of nerves to tissue repair and heralds a novel paradigm in fibrosis research.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estrogen receptor alpha mediated repression of PRICKLE1 destabilizes REST and promotes uterine fibroid pathogenesis 雌激素受体α介导的 PRICKLE1 抑制会破坏 REST 的稳定性并促进子宫肌瘤的发病机制
bioRxiv - Cell Biology Pub Date : 2024-09-09 DOI: 10.1101/2024.09.09.612036
Michelle M McWilliams, Faezeh Koohestani, Wendy N Jefferson, Sumedha Gunewardena, Kavya Shivashankar, Riley A Wertenberger, Carmen J Williams, T. Rajendra Kumar, Vargheese Mani Chennathukuzhi
{"title":"Estrogen receptor alpha mediated repression of PRICKLE1 destabilizes REST and promotes uterine fibroid pathogenesis","authors":"Michelle M McWilliams, Faezeh Koohestani, Wendy N Jefferson, Sumedha Gunewardena, Kavya Shivashankar, Riley A Wertenberger, Carmen J Williams, T. Rajendra Kumar, Vargheese Mani Chennathukuzhi","doi":"10.1101/2024.09.09.612036","DOIUrl":"https://doi.org/10.1101/2024.09.09.612036","url":null,"abstract":"Uterine fibroids (leiomyomas), benign tumors of the myometrial smooth muscle layer, are present in over 75% of women, often causing severe pain, menorrhagia and reproductive dysfunction. The molecular pathogenesis of fibroids is poorly understood. We previously showed that the loss of REST (RE-1 Silencing Transcription factor), a tumor suppressor, in fibroids leads to activation of PI3K/AKT-mTOR pathway. We report here a critical link between estrogen receptor alpha (ERα) and the loss of REST, via PRICKLE1. PRICKLE1 expression is markedly lower in leiomyomas, and the suppression of PRICKLE1 significantly down regulates REST protein levels. Conversely, overexpression of PRICKLE1 resulted in the restoration of REST in cultured primary leiomyoma smooth muscle cells (LSMCs). Crucially, mice exposed neonatally to environmental estrogens, proven risk factors for fibroids, expressed lower levels of PRICKLE1 and REST in the myometrium. Using mice that lack either endogenous estrogen (Lhb-/- mice) or ERα (Esr1-/- mice), we demonstrate that Prickle1 expression in the myometrium is suppressed by estrogen through ERα. Enhancer of zeste homolog 2 (EZH2) is known to participate in the repression of specific ERα target genes. Uterine leiomyomas express increased levels of EZH2 that inversely correlate with the expression of PRICKLE1. Using chromatin immunoprecipitation, we provide evidence for association of EZH2 with the PRICKLE1 promoter and for hypermethylation of H3K27 within the regulatory region of PRICKLE1 in leiomyomas. Additionally, siRNA mediated knockdown of EZH2 leads to restoration of PRICKLE1 in LSMCs. Collectively, our results identify a novel link between estrogen exposure and PRICKLE1/REST-regulated tumorigenic pathways in leiomyomas.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane-tethered cadherin substrates reveal actin architecture at adherens junctions 膜系粘连蛋白底物揭示粘连接头处的肌动蛋白结构
bioRxiv - Cell Biology Pub Date : 2024-09-09 DOI: 10.1101/2024.09.09.611904
Sayantika Ghosh, John James, Badeer Ummat, Darius Vasco Köster
{"title":"Membrane-tethered cadherin substrates reveal actin architecture at adherens junctions","authors":"Sayantika Ghosh, John James, Badeer Ummat, Darius Vasco Köster","doi":"10.1101/2024.09.09.611904","DOIUrl":"https://doi.org/10.1101/2024.09.09.611904","url":null,"abstract":"Adherens junctions (AJ) are E-cadherin-based adhesions at cell-cell contacts that connect the actin cytoskeleton of epithelial cells. The formation and maturation of these junctions is important in development, e.g. for the generation of epithelial tissues, and loss of adherens junctions is linked to metastasis in cancer. It is well established that AJ is a mechano-sensitive process involving the clustering of E-cadherins within the plasma membrane of cells and across adjacent cells, and the mechanical activation of α-catenins that connect E-cadherins with the actin cytoskeleton. However, how membrane mobility of E-cadherins and their organisation in time and space influence this process is less well understood, partly due to limitations to control the physical properties of cell membranes and perform high resolution in model organisms or cell monolayers. Here we place MCF7 cells labelled with fluorescent actin, e-cadherin, and α-catenin, on fluid-supported lipid bilayers containing the extracellular domain of cadherin as a biomimetic system to enable super resolution TIRF-SIM imaging of AJ. We found that MCF7 cells were able to attach and spread on these substrates, recruiting E-cadherin and α-catenin to form AJs that can mature and are mobile. Interestingly, we found that, depending on the mobility of E-cadherin within the SLB, distinct types of actin architecture emerge over time. Low mobility substrates support formin-based linear polymerisation while high mobility substrates support Arp2/3 -based branched actin polymerisation. These regions are spatially delimited within the cell and can change over time, giving rise to a mature state containing regions of both branched and linear actin.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maspin/SerpinB5 is a cytoskeleton-binding protein that regulates epithelial cell shape Maspin/SerpinB5 是一种细胞骨架结合蛋白,可调节上皮细胞的形状
bioRxiv - Cell Biology Pub Date : 2024-09-09 DOI: 10.1101/2024.09.09.612024
Luiz da Silva, Lia Paim, Ana Paula Menezes, Julia PC da Cunha, Susanne Bechstedt, Nathalie Cella
{"title":"Maspin/SerpinB5 is a cytoskeleton-binding protein that regulates epithelial cell shape","authors":"Luiz da Silva, Lia Paim, Ana Paula Menezes, Julia PC da Cunha, Susanne Bechstedt, Nathalie Cella","doi":"10.1101/2024.09.09.612024","DOIUrl":"https://doi.org/10.1101/2024.09.09.612024","url":null,"abstract":"Maspin/SerpinB5 is an abundant and pleiotropic protein mostly expressed by epithelia. Initially described as a tumor suppressor, it has been reported as a regulator of cell adhesion, migration, and invasion. How intracellular Maspin orchestrates these processes is poorly understood. In this study, we utilized Affinity purification-Mass spectrometry (AP/MS) alongside in vitro reconstitution assays to establish that Maspin directly interacts with microtubules and microfilaments. Additionally, CRISPR/Cas9-mediated GFP tagging of endogenous Maspin, combined with immunostaining, revealed its localization at the cortical cytoskeleton and the mitotic spindle. Depletion of Maspin by RNAi and CRISPR/Cas9 in three distinct epithelial cell lines disrupts cell-cell adhesion, reorganizes the cytoskeleton and results in upregulation of mesenchymal markers during interphase. In mitotic cells, loss of Maspin induces abnormal cell rounding and rearrangement of cortical F-actin. Moreover, Maspin suppresses microtubule growth in vitro and in cells. Collectively, these results demonstrate that Maspin acts at the interface between the cytoskeleton and adhesion sites, directly modulating cell shape and preventing epithelial-mesenchymal transition.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D nanoscale architecture of the respiratory epithelium reveals motile cilia-rootlets-mitochondria axis of communication 呼吸道上皮细胞的三维纳米级结构揭示了运动纤毛-小根-线粒体的通信轴
bioRxiv - Cell Biology Pub Date : 2024-09-08 DOI: 10.1101/2024.09.08.611854
Aaran Vijayakumaran, Christopher Godbehere, Analle Abuammar, Sophia Y Breusegem, Leah R. Hurst, Nobuhiro Morone, Jaime Llodra, Melis T. Dalbay, Niaj M. Tanvir, Kirsty MacLellan-Gibson, Chris O'Callaghan, Esben Lorentzen, CellMap Project Team, FIB-SEM Technology, Andrew Murray, Kedar Narayan, Vito Mennella
{"title":"3D nanoscale architecture of the respiratory epithelium reveals motile cilia-rootlets-mitochondria axis of communication","authors":"Aaran Vijayakumaran, Christopher Godbehere, Analle Abuammar, Sophia Y Breusegem, Leah R. Hurst, Nobuhiro Morone, Jaime Llodra, Melis T. Dalbay, Niaj M. Tanvir, Kirsty MacLellan-Gibson, Chris O'Callaghan, Esben Lorentzen, CellMap Project Team, FIB-SEM Technology, Andrew Murray, Kedar Narayan, Vito Mennella","doi":"10.1101/2024.09.08.611854","DOIUrl":"https://doi.org/10.1101/2024.09.08.611854","url":null,"abstract":"A major frontier in single cell biology is decoding how transcriptional states result in cellular-level architectural changes, ultimately driving function. A remarkable example of this cellular remodelling program is the differentiation of airway stem cells into the human respiratory multiciliated epithelium, a tissue barrier protecting against bacteria, viruses and particulate matter. Here, we present the first isotropic three-dimensional map of the airway epithelium at the nanometre scale unveiling the coordinated changes in cellular organisation, organelle topology and contacts, occurring during multiciliogenesis. This analysis led us to discover a cellular mechanism of communication whereby motile cilia relay mechanical information to mitochondria through striated cytoskeletal fibres, the rootlets, to promote effective ciliary motility and ATP generation. Altogether, this study integrates nanometre-scale structural, functional and dynamic insights to elucidate fundamental mechanisms responsible for airway defence.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pcbp1 constrains Oct4 expression in the context of pluripotency Pcbp1 在多能性背景下制约 Oct4 的表达
bioRxiv - Cell Biology Pub Date : 2024-09-08 DOI: 10.1101/2024.09.07.611681
Evgeny I. Bakhmet, Anna S. Zinovyeva, Andrey A. Kuzmin, Daria V. Smirnova, Mikhail N. Gordeev, Ekaterina E. Petrenko, Nikolay D. Aksenov, Alexey N. Tomilin
{"title":"Pcbp1 constrains Oct4 expression in the context of pluripotency","authors":"Evgeny I. Bakhmet, Anna S. Zinovyeva, Andrey A. Kuzmin, Daria V. Smirnova, Mikhail N. Gordeev, Ekaterina E. Petrenko, Nikolay D. Aksenov, Alexey N. Tomilin","doi":"10.1101/2024.09.07.611681","DOIUrl":"https://doi.org/10.1101/2024.09.07.611681","url":null,"abstract":"Oct4 is a commonly known marker of pluripotent stem cells as well as one of the key factors required for pluripotency induction. Its gene (Pou5f1) is subject to complicated regulation through distal and proximal enhancers. Noteworthy, this protein also plays an important role in primitive endoderm (PrE) specification, though the mechanisms driving its expression during this process are still unknown. Here we show that KH-domain protein Pcbp1 occupies poly(C)-sites of the Pou5f1 enhancers, but Pcbp1 knockout does not affect the Oct4 expression level in ESCs. On the contrary, Pcbp1 is essential for timely Oct4 downregulation upon differentiation signals. Residual Oct4 expression in turn leads to PrE specification, and this phenotype is reminiscent of that in ESCs constitutively expressing Oct4. Overall, our results point to Pcbp1 is a transcriptional regulator of Pou5f1, purported to synchronize Oct4 expression decline with the pluripotency network shutdown during differentiation. Oct4 being outside of this network loss its functions as factor of pluripotency and acts as PrE specifier.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress response of membrane-based cell organelles in budding yeast 芽殖酵母膜细胞器的应激反应
bioRxiv - Cell Biology Pub Date : 2024-09-08 DOI: 10.1101/2024.09.08.611912
Peng Sheng, zhe Li Bai, Hong Cao, Dan Li
{"title":"Stress response of membrane-based cell organelles in budding yeast","authors":"Peng Sheng, zhe Li Bai, Hong Cao, Dan Li","doi":"10.1101/2024.09.08.611912","DOIUrl":"https://doi.org/10.1101/2024.09.08.611912","url":null,"abstract":"The organelles of yeast demonstrate diverse morphological traits in response to different stress stimuli. However, there is a lack of systematic reports on the structural changes induced by stress stimuli in all membrane-based organelles. Here, we utilized a set of fluorescent protein-based organelle markers to highlight the distinct characteristics of yeast under various stress triggers, including high temperature, hydrogen peroxide, acetic acid, and ethyl alcohol. We found that all of these organelles undergo alterations in structure or function in response to the four stress triggers we tested. Specifically, filamentous mitochondria rupture into smaller segments when exposed to the above four stress conditions. The structure of the endoplasmic reticulum (ER) remains relatively unchanged, but its function is affected. Additionally, high temperature and hydrogen peroxide can induce the Ire1p-mediated ER unfolded protein response (UPR). The translocation of most nuclear-localized proteins to the cytosol is dependent on the specific stress conditions employed. Under the above stress conditions, the vacuole undergoes fusion, resulting in the formation of a larger vacuole from multiple smaller ones. Meanwhile, acetic acid-induced stress leads to the translocation of vacuole-localized proteins Prc1p and Pep4p to unknown puncta, while Ybh3p relocates from the inner vacuole to the vacuole membrane. Proteins localized in the early Golgi, late Golgi, and late endosomes exhibit distinct traits, such as fading away or mis-localization. The structure and function of peroxisomes, lipid droplets, and autophagosomes also undergo modifications. Furthermore, upon exposure to high temperature and ethanol, apoptosis-related proteins Yca1, Aif1, and Mmi1 aggregate instead of remaining dispersed.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable and universal prediction of cellular phenotypes 对细胞表型进行可扩展的通用预测
bioRxiv - Cell Biology Pub Date : 2024-08-12 DOI: 10.1101/2024.08.12.607533
Yuge Ji, Alejandro Tejada-Lapuerta, Niklas A Schmacke, Zihe Zheng, Xinyue Zhang, Simrah Khan, Ina Rothenaigner, Juliane Tschuck, Kamyar Hadian, Fabian J Theis
{"title":"Scalable and universal prediction of cellular phenotypes","authors":"Yuge Ji, Alejandro Tejada-Lapuerta, Niklas A Schmacke, Zihe Zheng, Xinyue Zhang, Simrah Khan, Ina Rothenaigner, Juliane Tschuck, Kamyar Hadian, Fabian J Theis","doi":"10.1101/2024.08.12.607533","DOIUrl":"https://doi.org/10.1101/2024.08.12.607533","url":null,"abstract":"Biological systems can be understood by perturbing individual components and studying the system's response. Cell biology experiments are defined by the applied treatment, cellular state, and the assayed phenotype. Given the vast number of possible combinations, testing every scenario is impractical. We present Prophet, a transformer-based computational model for cellular phenotype prediction. Prophet learns a representation of the cell biology experiment space, enabling it to predict the outcomes of untested small molecule or genetic perturbations in new cellular contexts across diverse phenotypes including gene expression, cell viability, and cell morphology. Its scalable architecture facilitates training across independent assays, using transfer learning to enhance performance across phenotypes. In vitro validation shows Prophet's potential to guide experimental design, making it a valuable tool for accelerating biological discovery.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"369 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid depletion and super-resolution microscopy reveal an unexpected role of the nuclear-speckle protein SRSF5 in paraspeckle assembly and dynamics during cellular stress 快速耗竭和超分辨率显微镜揭示了核壳蛋白SRSF5在细胞应激过程中壳旁组装和动力学中的意外作用
bioRxiv - Cell Biology Pub Date : 2024-08-11 DOI: 10.1101/2024.08.11.607506
Benjamin Arnold, Laurell Kessler, Ellen Kazumi Okuda, Ricarda R Rieger, Maria Clara Hernandez Canas, Ewelina Zebrowska, Cem Bakisoglu, Helder Y Nagasse, David Stanek, Dorothee Dormann, Kathi Zarnack, Mike Heilemann, Michaela Mueller-McNicoll
{"title":"Rapid depletion and super-resolution microscopy reveal an unexpected role of the nuclear-speckle protein SRSF5 in paraspeckle assembly and dynamics during cellular stress","authors":"Benjamin Arnold, Laurell Kessler, Ellen Kazumi Okuda, Ricarda R Rieger, Maria Clara Hernandez Canas, Ewelina Zebrowska, Cem Bakisoglu, Helder Y Nagasse, David Stanek, Dorothee Dormann, Kathi Zarnack, Mike Heilemann, Michaela Mueller-McNicoll","doi":"10.1101/2024.08.11.607506","DOIUrl":"https://doi.org/10.1101/2024.08.11.607506","url":null,"abstract":"Nuclear speckles (NS) and paraspeckles (PS) are adjacent condensates with distinct protein composition, with serine-arginine-rich splicing factors (SRSFs) concentrated in NS. Surprisingly, we find that SRSF5 is present in both. Combining super-resolution imaging, proximity proteomics and iCLIP, we show that SRSF5 binds with PS core proteins to the PS-scaffold RNA NEAT1 and locates between PS spheres. Acute SRSF5 depletion results in reduced PS with differently packaged NEAT1. Under stress, SRSF5's association with PS increases, and without SRSF5, PS cluster assembly is impaired. Interfering with binding to purine-rich RNAs even causes PS-NS fusion. In an intriguing over-compensation, longer SRSF5 depletion reduces TDP-43 levels via premature polyadenylation, leading to NEAT1 isoform switching and more PS. We propose that SRSF5 forms a stress-specific PS shell and acts as a glue for PS clusters. Additionally, we uncover SRSF5 as a novel regulator of TDP-43 and demonstrate how acute depletion distinguishes direct from compensatory effects.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PPARγ activation by lipolysis-generated ligands is required for cAMP dependent UCP1 induction in human thermogenic adipocytes 脂肪分解产生的配体激活 PPARγ 是 cAMP 依赖性 UCP1 诱导人类产热脂肪细胞的必要条件
bioRxiv - Cell Biology Pub Date : 2024-08-11 DOI: 10.1101/2024.08.10.607465
Anand Desai, Zinger Yang Loureiro, Tiffany DeSouza, Qin Yang, Javier Solivan-Rivera, Silvia Corvera
{"title":"PPARγ activation by lipolysis-generated ligands is required for cAMP dependent UCP1 induction in human thermogenic adipocytes","authors":"Anand Desai, Zinger Yang Loureiro, Tiffany DeSouza, Qin Yang, Javier Solivan-Rivera, Silvia Corvera","doi":"10.1101/2024.08.10.607465","DOIUrl":"https://doi.org/10.1101/2024.08.10.607465","url":null,"abstract":"Objective: The uncoupling protein 1 (UCP1) is induced in brown or beige adipocytes through catecholamine-induced cAMP signaling, which activates diverse transcription factors. UCP1 expression can also be enhanced by PPARγ agonists such as rosiglitazone (Rsg). However, it is unclear whether this upregulation results from de-novo differentiation of beige adipocytes from progenitor cells, or from the induction of UCP1 in pre-existing adipocytes. To explore this, we employed human adipocytes differentiated from progenitor cells and examined their acute response to Rsg, to the adenylate-cyclase activator forskolin (Fsk), or to both simultaneously. Methods: Adipocytes generated from primary human progenitor cells were differentiated without exposure to PPARγ agonists, and treated for 3, 6 or 78 hours to Fsk, to Rsg, or to both simultaneously. Bulk RNASeq, RNAScope, RT-PCR, CRISPR-Cas9 mediated knockout, oxygen consumption and western blotting were used to assess cellular responses. Results: UCP1 mRNA expression was induced within 3 hours of exposure to either Rsg or Fsk, indicating that the Rsg effect is independent on additional adipocyte differentiation. Although Rsg and Fsk induced distinct overall transcriptional responses, both induced genes associated with calcium metabolism, lipid droplet assembly, and mitochondrial remodeling, denoting core features of human adipocyte beiging. Unexpectedly, we found that Fsk-induced UCP1 expression was reduced by approximately 80% following CRISPR-Cas9-mediated knockout of PNPLA2, the gene encoding the triglyceride lipase ATGL. As anticipated, ATGL knockout suppressed lipolysis; however, the associated suppression of UCP1 induction indicates that maximal cAMP-mediated UCP1 induction requires products of ATGL-catalyzed lipolysis. Supporting this, we observed that the reduction in Fsk-stimulated UCP1 induction caused by ATGL knockout was reversed by Rsg, implying that the role of lipolysis in this process is to generate natural PPARγ agonists. Conclusion: UCP1 transcription is known to be stimulated by transcription factors activated downstream of cAMP-dependent protein kinases. Here we demonstrate that UCP1 transcription can also be acutely induced through PPARγ-activation. Moreover, both pathways are activated in human adipocytes in response to cAMP, synergistically inducing UCP1 expression. The stimulation of PPARγ in response to cAMP occurs as a result of the production of natural PPARγ-activating ligands through ATGL-mediated lipolysis.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信