对细胞表型进行可扩展的通用预测

Yuge Ji, Alejandro Tejada-Lapuerta, Niklas A Schmacke, Zihe Zheng, Xinyue Zhang, Simrah Khan, Ina Rothenaigner, Juliane Tschuck, Kamyar Hadian, Fabian J Theis
{"title":"对细胞表型进行可扩展的通用预测","authors":"Yuge Ji, Alejandro Tejada-Lapuerta, Niklas A Schmacke, Zihe Zheng, Xinyue Zhang, Simrah Khan, Ina Rothenaigner, Juliane Tschuck, Kamyar Hadian, Fabian J Theis","doi":"10.1101/2024.08.12.607533","DOIUrl":null,"url":null,"abstract":"Biological systems can be understood by perturbing individual components and studying the system's response. Cell biology experiments are defined by the applied treatment, cellular state, and the assayed phenotype. Given the vast number of possible combinations, testing every scenario is impractical. We present Prophet, a transformer-based computational model for cellular phenotype prediction. Prophet learns a representation of the cell biology experiment space, enabling it to predict the outcomes of untested small molecule or genetic perturbations in new cellular contexts across diverse phenotypes including gene expression, cell viability, and cell morphology. Its scalable architecture facilitates training across independent assays, using transfer learning to enhance performance across phenotypes. In vitro validation shows Prophet's potential to guide experimental design, making it a valuable tool for accelerating biological discovery.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"369 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable and universal prediction of cellular phenotypes\",\"authors\":\"Yuge Ji, Alejandro Tejada-Lapuerta, Niklas A Schmacke, Zihe Zheng, Xinyue Zhang, Simrah Khan, Ina Rothenaigner, Juliane Tschuck, Kamyar Hadian, Fabian J Theis\",\"doi\":\"10.1101/2024.08.12.607533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological systems can be understood by perturbing individual components and studying the system's response. Cell biology experiments are defined by the applied treatment, cellular state, and the assayed phenotype. Given the vast number of possible combinations, testing every scenario is impractical. We present Prophet, a transformer-based computational model for cellular phenotype prediction. Prophet learns a representation of the cell biology experiment space, enabling it to predict the outcomes of untested small molecule or genetic perturbations in new cellular contexts across diverse phenotypes including gene expression, cell viability, and cell morphology. Its scalable architecture facilitates training across independent assays, using transfer learning to enhance performance across phenotypes. In vitro validation shows Prophet's potential to guide experimental design, making it a valuable tool for accelerating biological discovery.\",\"PeriodicalId\":501590,\"journal\":{\"name\":\"bioRxiv - Cell Biology\",\"volume\":\"369 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.12.607533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.12.607533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物系统可以通过扰动单个成分和研究系统的反应来了解。细胞生物学实验由应用的处理方法、细胞状态和检测的表型决定。鉴于可能的组合数量巨大,测试每一种情况都是不切实际的。我们介绍的 Prophet 是一种基于转换器的细胞表型预测计算模型。先知 "学习细胞生物学实验空间的表征,从而能够预测在新的细胞环境中未经测试的小分子或遗传扰动在不同表型(包括基因表达、细胞活力和细胞形态)下的结果。它的可扩展架构便于在独立检测中进行训练,利用迁移学习提高跨表型的性能。体外验证显示了 Prophet 在指导实验设计方面的潜力,使其成为加速生物发现的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable and universal prediction of cellular phenotypes
Biological systems can be understood by perturbing individual components and studying the system's response. Cell biology experiments are defined by the applied treatment, cellular state, and the assayed phenotype. Given the vast number of possible combinations, testing every scenario is impractical. We present Prophet, a transformer-based computational model for cellular phenotype prediction. Prophet learns a representation of the cell biology experiment space, enabling it to predict the outcomes of untested small molecule or genetic perturbations in new cellular contexts across diverse phenotypes including gene expression, cell viability, and cell morphology. Its scalable architecture facilitates training across independent assays, using transfer learning to enhance performance across phenotypes. In vitro validation shows Prophet's potential to guide experimental design, making it a valuable tool for accelerating biological discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信